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Abstract

PIER: Internet Scale P2P Query Processing with DistributedHash Tables

by

Ryan Jay Huebsch

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Distributed database systems have long been a topic of interest in the database research community. Existing

designs focus on two principles; make the distributiontransparentto users and provide a rich declarative

query language with strict semantic guarantees. As a result, they have modest targets for network scalability

with none of these systems being deployed on much more than a handful of distributed sites.

The Internet community has recently become interested in distributed query processing. Not sur-

prisingly, they approach this problem from a very differentangle than the traditional database literature. The

fundamental goal of Internet systems is to operate at very large scale (thousands if not millions of nodes). To

achieve this degrees of scale, these system sacrifice transparency and/or flexibility.

This thesis develops a system called PIER (which stands for “Peer-to-Peer Information Exchange

and Retrieval”) which provides a rich query language that provides location transparency and scalability

with relaxed semantics. We explore the architecture of PIER, develop techniques for query processing (with

specific focus on aggregation and join operations), and finally examine an optimization problem with multiple

simultaneous aggregation queries.

Professor Joseph M. Hellerstein
Dissertation Committee Chair
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Chapter 1

Introduction

At any instant of time there are hundreds of millions of computers connected to the Internet. Nor-

mally just a small fraction of these machines function as servers and provide methods for sharing data, while

most of the computers do not expose methods for efficiently sharing their information. This shortcoming lim-

its the types of applications that are developed. Designersthat want to utilize the huge volume of information

locked inside the end-hosts are often forced to design centralized systems, which are not always suitable.

PIER (which stands for “Peer-to-Peer Information Exchangeand Retrieval”) was conceived to be

a framework for applications desiring a pure distributed architecture. PIER enables computation where end-

hosts supply the raw information and perform the calculation in a completely distributed manner with no

centralized coordination. PIER provides a flexible and familiar platform for application builders using a query

language composed of relational database-style operations such as aggregation and joins, along with more

general dataflow operators to support a wide range of applications. The query language supports snapshot

and continuous query semantics along with support for recursive queries.

PIER presents a “technology push” toward viable, massivelydistributed query processing at a sig-

nificantly larger scale than previously demonstrated. In addition, we present an important, viable “application

pull” for massive distribution: the querying of Internet-based datain situ, without the need for database de-

sign, maintenance, or integration. We believe in the need and feasibility of such technology in arenas like

network monitoring.

In this thesis we present our design decisions within the design space, including our choice to use

relatively new overlay network algorithms. We describe possible applications that could be built using PIER,

such as a network monitoring tool. The majority of the thesisis devoted to describing the architecture and

implementation in detail. Throughout the discussion of algorithms we present experimental results from

detailed simulations.

The primary contribution of this work is to show that the use of an overlay network, in particular

a class of algorithms commonly referred to asdistributed hash tablesor DHTs, are an elegant and efficient

tool to enabling scaling the number of participating nodes beyond existingparallel or distributed database
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systems. We show and compare methods for implementing relational joins and aggregation. Overlay networks

and DHTs will be described in Chapter 2 and the use of DHTs in PIER is described in depth in Chapters 3

and 4.

The design of PIER was guided by a number of design principlesdiscussed next. Afterwards we

briefly describe potential applications that helped guide our work.

1.1 Design Decisions

PIER fully embraces the notion ofdata independence, and extends the idea from its traditional

disk-oriented setting to promising new territory in the volatile realm of Internet systems [35]. PIER adopts

a relational data model in which data values are fundamentally independent of their physical location in

the network. While this approach is well established in the database community, it is in stark contrast to

other Internet-based query processing systems, includingwell-known systems like DNS [56] and LDAP [37],

filesharing systems like Gnutella and KaZaA, and research systems like Astrolabe [78] and IrisNet [24] –

all of which use hierarchical networking schemes to achievescalability. Analogous to the early days of

relational databases, PIER may be somewhat less efficient than a customized locality-centric solution for

certain constrained workloads. But PIER’s data-independence allows it to achieve reasonable performance

on a far wider set of queries, making it a good choice for easy development of new Internet-scale applications

that query distributed information.

1.1.1 Network Scalability, Resilience and Performance

Traditionally, database scalability is measured in terms of database sizes. In the Internet context,

it is also important to take into account the network characteristics and the number of nodes in the system.

PIER achieves scalability by usingdistributed hash table(DHT) technology (see [41, 63, 66, 68, 74, 87] for

a few representative references). As we discuss in more detail in Sections 2.3 and 3.2, DHTs are overlay

networks providing both location-independent naming and network routing, and they are reused for a host of

purposes in PIER that are typically separate modules in a traditional DBMS. DHTs are extremely scalable,

typically incurring per-operation overheads that grow only logarithmically with the number of participating

nodes in the system. They are also designed for resilience, capable of operating in the presence ofchurn in

the network: frequent node and link failures, and the steadyarrival and departure of participating nodes in

the network.

Like most Internet applications, we want our system’s scalability to grow organically with the

degree of deployment; this degree will vary over time, and differ across applications of the underlying tech-

nology. This means that we must avoid architectures that require a priori allocation of a data center, and

financial plans to equip and staff such a facility. The need for organic scaling is where we intersect with

the current enthusiasm for P2P systems (such as the DHT workscited previously). P2P systems gain more

capacity as more participants join and contribute.
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PIER is designed for the Internet, and assumes that the network is the key bottleneck. This is

especially important for a P2P environment where most of thehosts see bottlenecks at the “last mile” of

DSL and cable links. As discussed in Chapter 4, PIER minimizes network bandwidth consumption via fairly

traditional bandwidth-reducing algorithms (e.g., Bloom joins [53], multi-phase aggregation techniques [71],

etc) and new optimization algorithms. But at a lower and perhaps more fundamental system level, PIER’s core

design centers around the low-latency processing of large volumes of network messages. In some respects

therefore it resembles a router as much as a database system.

1.1.2 Relaxed Consistency

While transactional consistency is a cornerstone of database functionality, conventional wisdom

states that ACID transactions severely limit the scalability and availability of distributed databases [28]. ACID

transactions are certainly not used in any massively distributed systems on the Internet today. Brewer neatly

captures the issue in his “CAP Conjecture” [25] which statesthat a distributed data system can enjoy only

two out of three of the following properties: Consistency, Availability, and tolerance of network Partitions.

He notes that distributed databases always choose “C”, and sacrifice “A” in the face of “P”. By contrast, we

want our system to become part of the “integral fabric” of theInternet – thus it must be highly available, and

work on whatever subset of the network is reachable. In the absence of transactional consistency, we will

have to provide best-effort results, and measure them usinglooser notions of correctness, e.g., precision and

recall.

1.1.3 Decoupled Storage

A key decision we made was to decouple storage from the query engine. We were inspired in this

regard by P2P filesharing applications, which have been successful in adding new value by querying pre-

existing datain situ. This approach is also becoming common in the database community in data integration

and stream query processing systems. PIER is designed to work with a variety of storage systems, from

transient storage and data streams (via main memory buffers) to locally reliable persistent storage (file sys-

tems, embedded databases like BerkeleyDB, JDBC-enabled databases), to proposed Internet-scale massively

distributed storage systems [19, 45].

In strictly decoupling storage from the query engine, we give up the ability to reliably store system

metadata. As a result, PIER hasno metadata catalogof the sort found in a traditional DBMS. This has

significant ramifications on many parts of the system, such asquery optimization and verifying query syntax

(Section 3.3).

1.1.4 Standard Schemas via Grassroots Software

An additional challenge to the use of databases – or even structured data wrappers – is the need for

thousands of users to designand integratetheir disparate schemas. These are daunting semantic problems,
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and could easily prevent average users from adopting database technology. Fortunately, there is a quite

natural pathway for structured queries to “infect” Internet technology: the information produced by popular

software. Local network monitoring tools like Snort [67], TBIT [1] and even tcpdump provide ready-made

“schemas”, and – by nature of being relatively widespread – are de facto standards. Moreover, thousands or

millions of users deploy copies of the same application and server software packages, and one might expect

that such software will become increasingly open about reporting its properties. The ability to stitch local

analysis tools and reporting mechanisms into a shared global monitoring facility is both semantically feasible

and extremely desirable.

Of course we do not suggest that research on widespread (peer-to-peer) schema design and inte-

gration is incompatible with our research agenda; on the contrary, solutions to these challenges only increase

the potential impact of our work. However, we do argue that massively distributed database research can and

should proceed without waiting for breakthroughs on the schema front.

1.1.5 Software Engineering

From day one, PIER has targeted a platform of many thousands of nodes on a wide-area network.

Development and testing of such a massively distributed system is hard to do in the lab. In order to make

this possible,native simulationis a key requirement of the system design. By “native” simulation we mean

a runtime harness that emulates the network and multiple machines, but otherwise exercises the standard

system code.

The trickiest challenges in debugging massively distributed systems involve the code that deals with

distribution and parallelism, particularly the handling of node failures and the logic surrounding the ordering

and timing of message arrivals. These issues tend to be very hard to reason about, and are also difficult to

test robustly in simulation. As a result, we attempted to encapsulate the distribution and parallelism features

within as few modules as possible. In PIER, this logic resides largely within the DHT code. The relational

model helps here: while subtle network timing issues can affect the ordering of tuples in the dataflow, this

has no effect on query answers or operator logic (PIER uses nodistributed sort-based algorithms).

1.2 Application Space

PIER is targeted at applications that run on many thousands of end-users’ nodes where centraliza-

tion is undesirable or infeasible. To date, our work has beengrounded in two specific application classes: file

sharing and network monitoring.

1.2.1 P2P File Sharing

File sharing was one of the first popular P2P applications in global deployment and therefore it

serves as our baseline for scalability. It is characterizedby a number of features: a simple schema (keywords

and fileIDs), a constrained query workload (Boolean keywordsearch), data that is stored without any inherent
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Figure 1.1: CDF of latency for receipt of an answer from PIER and Gnutella, over real user queries intercepted
from the Gnutella network. PIER was measured on 50 PlanetLabnodes worldwide, over a challenging subset
of the queries: those that used “rare” keywords used infrequently in the past. As a baseline, the CDF for
Gnutella is plotted both for the rare-query subset, and for the complete query workload (both popular and
rare queries). Details appear in [49].

locality, loose query semantics (resolved by users), relatively high churn, no administration, and extreme ease

of use. In order to test PIER, we implemented a filesharing search engine using PIER and integrated it into the

existing Gnutella filesharing network, to yield a hybrid search infrastructure that uses the Gnutella protocol

to find widely replicated nearby items, and the PIER engine tofind rare items across the global network. As

we describe in a paper on the topic [49], we deployed this hybrid infrastructure on 50 nodes worldwide in the

PlanetLab testbed [62], and ran it over real Gnutella queries and data. Our hybrid infrastructure outperformed

native Gnutella in both recall and performance. As one example of the results from that work, the PIER-based

hybrid system reduced the number of Gnutella queries that receive no results by 18%, with significantly lower

answer latency. Figure 1.1 presents a representative performance graph from that study showing significant

decreases in latency.

1.2.2 Endpoint Network Monitoring

The Internet today is viewed by many as a black box. Packets ofdata originate from one host

and hopefully arrive at their destination shortly thereafter. However, when data is not flowing as expected,

even experienced users are often left clueless as to why communication is failing. Furthermore, since the

Internet, by definition, is the federation of thousands of smaller networks and a few large networks, there is

no single authority who can provide explanations for problems. There is no single entity who has access to

every parameter/setting, current status, or more broadly the global state of the Internet.

We believe it is possible to analyze partial network state from many endpoints and form a more
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Figure 1.2: The top 10 sources of firewall log events as reported by 350 PlanetLab nodes running on 5
continents.

complete picture of the current overall state. As more hostscontribute, the picture becomes more complete

and accurate. Given that network status information is already decentralized both in location and administra-

tion, a decentralized query engine would be desirable.

Specifically, end-hosts have a wealth of network data with standard schemas: packet traces and fire-

wall logs are two examples. Endpoint network monitoring over this data is an important emerging application

space, with a constrained query workload (typically distributed aggregation queries with few if any joins),

streaming data located at both sources and destinations of traffic, and relatively high churn. Approximate

query answers are sufficient, and online aggregation [36] isdesirable.

Figure 1.2 shows a prototype applet we built, which executesa PIER query running over firewall

logs on 350 PlanetLab nodes worldwide. The query reports theIP addresses of the top ten sources of firewall

events across all nodes. Recent forensic studies of (warehoused) firewall logs suggest that the top few sources

of firewall events generate a large fraction of total unwanted traffic [85]. This PIER query illustrates the same

result in real time, and could be used to automatically parametrize packet filters in a firewall.
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Chapter 2

Background

PIER builds on a number of classic and modern topics in both database and network research. This

chapter provides an overview of a number of these backgroundconcepts including distributed and parallel

databases, parallel query processing methods, and overlaynetworks.

2.1 Distributed and Parallel Databases

Distributed databases and parallel databases are two related areas of data management work. In

both cases one of the primary design goals is for the system tologically appear to the user as a centralized

system. A user submits a query without knowledge of where thedata is located. The database system provides

the complete answer using data present throughout the entire network of participating nodes as if all the data

was stored on a single node. This is a natural extension of thedisk-oriented data independence feature of

single node database systems. As with a centralized database system, the distributed/parallel database will

optimize the query to find an efficient plan of accessing the required data and provide the same transactional

support (ACID) found in a centralized system.

The distinction between a distributed and parallel database is often based on the level of auton-

omy and type of network connecting the participating nodes.Distributed databases are loosely coordinated

autonomous systems (possibly with different administrators) often connected by wide-area networks. Par-

allel databases are tightly coupled nodes under the same administrative control connected by a high-speed

local-area network. In a parallel database there is often a coordinator node, where all queries are submit-

ted, optimized, and then distributed to the computation nodes for processing. However, with a distributed

database queries can submitted to any node, which acts as thecoordinator for that query and has the role of

computation node for other queries. Distributed systems can often answer some queries when disconnected

from the network if all the required data is available from the connected nodes.

In both distributed and parallel databases the data is fragmented among the nodes. For a given set

of relations in a database, there are three means of fragmenting:
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• Relations: Each node participating in the system is assigned a subset ofthe relations. The entire

relation (all tuples and all attributes) is stored on the assigned node. For example, node 1 may store

relationsR andS and node 2 stores relationsT andU .

• Vertical Partitioning: A relation is split into one or more partitions, such that each partition contains

a subset of attributes (possibly overlapping) for each tuple in the relation. Each partition at a minimum

contains the primary key attribute(s). This enables an equi-join on the primary key attribute(s) over all

partitions to form the complete original relation. For example, relationR with primary keyRA can be

partitioned in three partitions,{RA, RB, RC}, {RA, RD, RE}, and{RA, RB, RE}.

• Horizontal Partitioning: A relation is split into one or more partitions, such that each partition con-

tains a subset of the tuples. This method is sometimes calleddeclustering. Each tuple in a partition is

complete with all attributes. The complete original relation can be formed by taking a union of each

partition. Horizontal partitioning can be achieved using anumber of methods:

– Round-Robin Tuples are evenly distributed among the partitions. Tuplesare effectively ran-

domly distributed. This method supports full relation scans efficiently, but is not appropriate for

index or range queries since tuples are not stored based on value. Locating specific tuples based

on value requires examining each and every tuple.

– Hashing Tuples are hashed on one or more attributes (for example the primary key). Given a

sufficiently good hash function, tuples are evenly distributed. This method works well for full

relation scans and index scans on the hashing attributes, but is not appropriate for range queries

since tuples are not ordered.

– RangeTuples are divided into groups defined by non-overlapping ranges of one or more at-

tributes. While this method works well for queries with predicates over the range attribute(s),

if the ranges are not well chosen then the workload may not be equally distributed among the

participating nodes.

– Arbitrary Predicates A generalization of the range partitioning method, tuples are divided into

groups based an arbitrary predicates (as opposed to just range predicates). To be a correct parti-

tioning, each tuple must match at least one predicate. If tuples are allowed to match multiple pred-

icates the tuple is effectively replicated and special caremust to be taken to always update/delete

all copies of the tuple. This method works well when the partitioning predicates are commonly

found in the queries. However, this method is also susceptible to uneven data distribution.

Figure 2.1 illustrates vertical and horizontal partitioning. A combination of multiple of fragmenta-

tion techniques can be used simultaneously. Each fragment must be allocated to one or more nodes. Allo-

cating the same fragment to more than one node is replication. Furthermore, replication can also occur if the

fragments are overlapping. The decision on which fragmentation methods to use and an allocation strategy

is based on the data and query workload. For example, if only some attributes for a particular relation are
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Figure 2.1: Relation R (top left) can be partitioned horizontally (bottom left), partitioned vertically (top right)
or partitioned both horizontally and vertically (bottom right).

queried at one site, then a vertical partition containing those attributes can be allocated to the node at that site.

Traditionally a highly skilled database administrator chooses the allocation scheme.

2.2 Distributed Query Processing Methods

There are two primary forms of distributed processing in database systems: pipelined and parti-

tioned. Pipeline parallelism divides a query plan into blocks of operators. Each block is then assigned to a

node for processing. The blocks are connected via special operators that transfer tuples from one node to

another. On the other hand, partitioned parallelism is achieved by dividing the data into disjoint sets using

horizontal partitioning (see Section 2.1). Each node executes the entire query plan over a subset of the data.

At various points in the query plan, usually before a join or aggregation, special operators may move data

between nodes such that complete join or aggregation buckets/groups are placed on the same node.

The majority of the literature for distributed query processing focuses on methods for joins. The

early systems considered two methods: shipping entire relations and “fetching “ tuples for index joins. These

methods are best suited to small networks where there are fewparticipating nodes. For example, consider

a join where the one relation,R, is stored at node1 and the other relation,S, is stored at node2. Two

possible query plans include having node1 send a copy of relationR to node2 where the join is performed,

or vice-versa having node2 send a copy of relationS to node1. Figure 2.2 illustrates the first scenario.

The Fetch Matches method [53] is a specialization of the relation shipping method. Instead of

sending the entire relation from one node to another, the node with theR relation (also called the “outer

relation”) sends a (fetch) request for some tuples to the node with theS relation (also called the “inner”

relation). The requested tuples are then forwarded to the requesting node. Unlike the shipping the entire

table, if there are tuples in theS relation that are not needed for the join they will not be sentacross the

network. Figure 2.3 illustrates an example fetch matches query.
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Figure 2.2: RelationR is stored on node 1 and relationS is stored on node 2. To compute the join node 2
sends a copy ofS to node 1.

Figure 2.3: Fetch Matches: RelationR is stored on node 1 and relationS is stored on node 2. After scanning
R, node 1 requestsS tuples where attribute c is equal to ’blue’. Node 2 sends the tuples to 1 where the join
is performed.
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Figure 2.4: Hash Join: RelationsR (andS) are horizontally partitioned by hashing attributeR.k (andS.k).
To compute the join onR.a = S.b, all nodes scan their partitions ofR (andS) and send a copy of the tuple
based to another node based on the hash ofR.a (andS.b).

Both of these methods were designed for systems where entirerelations are stored at individual

nodes as opposed to using horizontal partitions. These methods work well with pipelined parallelism.

Parallel query processing systems (such as the Gamma system[20]) build on the relation-shipping

concept. Since parallel systems primarily use horizontal partitioning, they dynamically create and move

fragments instead of entire relations to execute joins and aggregations. A parallel hash join is executed by

redistributing tuples among the nodes using a hash functionon the join attribute(s). Each hash bucket is

assigned to a node using a mapping function known by all nodes. Once all the source tuples are hashed into

their proper buckets, each node can compute the join or aggregation over the hash bucket locally. A three-

node example is shown in Figure 2.4. This is a straightforward extension of the centralized hash join, with

the exception that individual hash buckets maybe located ondifferent nodes. The use of hashing instead of

range or arbitrary predicates was chosen to help achieve an even distribution of tuples and work.

2.3 Overlay Networks

A network can be broadly defined as the collection of communication links between a set of nodes,

along with the addressing and routing scheme used. A small Ethernet network may contain two or more

nodes connected to a switch. Each node on this network has a network interface card with a built-in Ethernet

address (also called the MAC address). The routing is handled by the switch which delivers each packet of

data to appropriate node based on the Ethernet address.

An overlay network is network that is built on top of another network. It can provide new addressing

and routing protocols with the goal of providing a new service not achieved using the lower network(s). In
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essence, overlay networks are a means of inserting a layer ofindirection above the network.

The Internet (and the IP protocol) can be considered an overlay network. The Internet allows for

communication across all participating networks. Nodes inthe Internet are assigned addresses and use a

variety of routing protocols. However, these addresses andprotocols work on top of the native schemes used

by the underlying network.

Overlay networks can also be used to provide content-based routing. In content-based routing the

source specifies the destination based on the value of the data it is sending or retrieving. The destination

node is then determined on the fly by the overlay network. Overtime as nodes join and leave the system

the destination node for a particular value may change. The IP protocol requires the source to specify the

destination node directly, thus forcing the sender to determine the exact destination node.

When evaluating different content-based routing algorithms the key metrics include latency, con-

sistency and robustness. Many implementations use multi-hop routing, which can be much slower than direct

routing, increasing the latency of a message. Reducing the number of hops or reducing the latency of each

hop can improve the overall latency. Consistency is the measure of whether different messages (from the

same or different source nodes) are routed to the same destination node. Many content-based routing al-

gorithms claim “eventual consistency” which means that if the network remains stable for some period of

time the routing becomes completely consistent. Finally robustness measures the system’s ability to remain

(mostly) consistent despite nodes joining, leaving and network interruptions.

There have been a large number of content-based routing algorithms introduced. Our work primar-

ily used one, Bamboo [66] which we briefly describe below.

2.3.1 Bamboo

Bamboo is a content-based overlay router loosely based on Pastry [68]. Bamboo was engineered

to be extremely robust to node failures and network disruptions. In particular the design of Bamboo is based

on periodic (instead of reactive) recovery from failures, careful calculation of message timeouts, and uses

proximity neighbor selection.

Bamboo uses a 160-bit flat identifier space grouped intox digits of log2b bits wherex = 160

log2b
.

The parameterb is commonly referred to as the base, with 16 (hex digits) as a common value. The space

can be visualized as circle where the identifier wraps aroundat 2160. Figure 2.5 shows an example Bamboo

network.

Each node is randomly assigned an identifier (sometimes the hash of the node’s IP address is used).

Since the space of identifiers is much larger than the number of nodes, there are many identifiers that do not

map directly to a node. Instead, identifiers map to the node numerically closest (with wraparound at 0 and

2160. Each node maintains two sets of neighbors or links: arouting tableand aleaf set.

The leaf set reliably maintains a set of links to other nodes that are “nearby” in the circle, thel

nodes that immediately precede and follow the node in the identifier space. The leaf set may only contain

active/live nodes, since the leaf set is required for correct routing.
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Figure 2.5: An example Bamboo network with a 8-bit, base 16 identifier space. Leaf (solid lines) and routing
(dashed lines) tables/links for Node 52 are shown.

In addition to the leaf set, there is also a routing table. Foreach prefix of the node’s identifier, the

routing table contains links forb nodes such that each of thoseb nodes have the same prefix and different

digits for the digit following the prefix. The routing table is used to reduce the number of hops when routing

a message. Bamboo is less aggressive in maintaining only active nodes in the routing table than in the leaf

set since it is only used for efficiency. This means Bamboo maycheck the node for liveliness less frequently

than a leaf set node, saving resources.

The combination of the leaf set with “short distance” links (in the identifier space) and the routing

table with “long distance” links allows Bamboo to efficiently, reliably and consistently route to any identifier.

In the worst case, the leaf set is sufficient (although not efficient) for routing a message. Further details about

Bamboo are beyond the scope of this dissertation and can be found in [66].
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Chapter 3

Architecture

In this chapter we discuss the architecture of PIER. Figure 3.1 shows an overview of the architec-

ture. The architecture is composed of three main parts: the execution environment (not shown in the figure),

the distributed hash table (DHT), and the query processor. The query processor coordinates the execution of

local dataflows on all participating nodes while the DHT routes data between nodes. The execution environ-

ment provides a event-based style of multiprogramming to enable easy simulation and deployment.

In the following sections we discuss each of the main components starting from the foundation and

working our way up to the query processor.

3.1 Execution Environment

Like any serious query engine, PIER is designed to achieve a high degree of multiprogramming

across many I/O-bound activities. This permits the query processor to issue many simultaneous requests for

data without waiting for a request to complete before issuing the next request. This can significantly reduce

latency and this strategy is employed in all query processors. It also needs to support native simulation

(Section 1.1.5). These requirements led us to a design grounded in two main components: a narrowVirtual

Runtime Interface, and anevent-basedstyle of multiprogramming that makes minimal use of threads.

3.1.1 Virtual Runtime Interface

The lowest layer of PIER presents a simpleVirtual Runtime Interface(VRI) that encapsulates the

basic execution platform. The VRI can be bound to either the real-worldPhysical Runtime Environment

(Section 3.1.3) or to aSimulation Environment(Section 3.1.4). The VRI is composed of interfaces to the

clock and timers, to long running computation tasks, to network protocols, and to the internal PIER scheduler

that dispatches timer, computation, and network events. A representative set of the methods provided by the

VRI are shown in Table 3.1.
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Figure 3.1: The general architecture of PIER. A query is submitted to query processor by a user application
on any node. The query is executed on multiple nodes using theDHT as the primary method communication.
Query results can be sent directly to the user application over the network without going through the DHT.

Clock and Timer Scheduler
longgetCurrentTime()
void scheduleEvent (delay, callbackData, callbackClient)

void handleTimer (callbackData)

Computation Scheduler
void scheduleComputation(data, callbackClient, computationFunction)

void handleComputation (data, result)

UDP Network Protocol
void listen(port, callbackClient)
void release(port)
void send (source, destination, payload, callbackData, callbackClient)

void handleUDPAck (callbackData, success)
void handleUDP (source, payload)

TCP Network Protocol
void listen(port, callbackClient)
void release(port)
TCPConnectionconnect(source, destination, callbackClient)
disconnect (TCPConnection)
int read (byteArray)
int write(byteArray)

void handleTCPData (TCPConnection)
void handleTCPNew (TCPConnection)
void handleTCPError (TCPConnection)

Table 3.1: Selected methods in the VRI.
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3.1.2 Events and Handlers

Multiprogramming in PIER is achieved via an event-based programming model running in a single

thread. This is common in routers and network-bound applications, where most computation is triggered

by the arrival of a message, or by tasks that are specifically posted by local code. Most events in PIER are

processed by a single thread with no preemption. A special class of events,computation events, are processed

in separate threads.

The single-threaded, event-based approach has a number of benefits for our purposes. Most im-

portantly, it easily supports our goal of native simulation. Discrete-event simulation is the standard way to

simulate multiple networked machines on a single node [60].By adopting an event-based model at the core

of our system, we are able to opaquely reuse most of the program logic whether in theSimulation Envi-

ronmentor in thePhysical Runtime Environment. The uniformity of simulation and runtime code is a key

design feature of PIER that has enormously improved our ability to debug the system and to experiment with

scalability. Moreover, we found that Java did not handle a large number of threads efficiently1. Finally, as a

matter of taste we found it easier to code using only one thread for event handling.

As a consequence of having only a single main thread, each event handler in the system must com-

plete relatively quickly compared to the inter-arrival rate of new events. In practice this means that handlers

cannot make synchronous calls to potentially blocking routines such as network and disk I/O. Instead, the

system must utilize asynchronous (a.k.a.split-phaseor non-blocking) I/O, registeringcallbackroutines that

handle notifications that the operation is complete2. Similarly, any long chunk of CPU-intensive code must

yield the processor after some time, by scheduling its own continuation as a timer event, or be scheduled as

computation event. A handler must manage its own state on theheap, because the program stack is cleared

after each event yields back to the scheduler.

Computation events are relatively long running tasks (longer than a few milliseconds) that do not

support preemption. When the computation is complete an event is inserted into main queue to handle the

result. Special handling of these tasks is important for both the runtime and simulation environments. Since

these tasks do not complete relatively fast it is important to account for the running time in simulation. In

runtime long running tasks on the main queue may significantly delay execution other events. As of now,

only the multi-query optimization algorithms (described in Chapter 5) require the use of computation events.

All events originate with the expiration of a timer, with thecompletion of an I/O operation or at the

completion of computation event.

1We do not take a stand on whether scalability in the number of threads is a fundamental limit [81] or not [79]. We simply needed to
work around Java’s current limitations in our own system.

2At the time of PIER’s design Java did not yet have adequate support for non-blocking file and JDBC I/O operations. For scenarios
where these “devices” are used as data sources, we spawn a newthread that blocks on the I/O call and then enqueues the proper event
on the Main Scheduler’s event priority queue when the call iscomplete.
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Figure 3.2: Physical Runtime Environment - A single priority queue in the Main Scheduler stores all events
waiting to be handled. Events are enqueued either by settinga timer or through the arrival of a network
message. Out-bound network messages are enqueued for asynchronous processing. A second I/O thread is
responsible for dequeuing and marshaling the messages, andplacing them on the network. The I/O thread
also receives raw network messages, unmarshals the contents, and places the resulting event in the Main
Scheduler’s queue.

3.1.3 Physical Runtime Environment

The Physical Runtime Environment consists of the standard system clock, a priority queue of events

in theMain Scheduler, an asynchronous I/O thread, and a set of IP-based networking libraries (Figure 3.2).

While the clock and scheduler are fairly simple, the networking libraries merit an overview.

UDP is the primary transport protocol used by PIER, mainly due its low cost (in latency and state

overhead) relative to TCP sessions. However, UDP does not support reliable delivery or congestion control.

To overcome these limitations, we utilize the UdpCC library[66], which provides for acknowledgments and

TCP-style congestion control. Although UdpCC tracks each message and provides for reliable delivery (or

notifies the sender on failure), it does not guarantee in-order message delivery. TCP sessions are primarily

used for communication with user clients and for some types of data sources. TCP facilitates compatibility

with standard clients and has fewer problems passing through firewalls and NATs.

The physical runtime environment uses at least two threads.One thread for processing the main

event queue and a second thread dedicated to I/O handling. A separate thread for I/O is used to ensure that the

acknowledgments used in UdpCC are sent in a timely fashion. Additional threads are used for synchronous

I/O data sources and for each computation event.
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3.1.4 Simulation Environment

The Simulation Environment is capable of simulating thousands of virtual nodes on a single physi-

cal machine, providing each node with its own independent logical clock and network interface (Figure 3.3).

The Main Scheduler for the simulator is designed to coordinate the discrete-event simulation by demultiplex-

ing events across multiple logical nodes. The program code for each node remains the same in the Simulation

Environment as in the Physical Runtime Environment.

Computation events are handled like normal events, except the wall-clock time to perform the

execution is recorded. After applying an optional fudge-factor multiplier to the observed execution time, the

result handler for the computation is scheduled to be calledin the simulator after the calculated delay. The

fudge factor can be used to adjust for nodes that have slower CPU’s than the machine being used to run the

simulation. Additionally, the fudge factor can be used to approximate CPU sharing that is likely to occur in

real environments when nodes are simultaneously used for other applications.

The network is simulated at message-level granularity rather than packet-level for efficiency. In

other words, each simulated “packet” contains an entire application message and may be arbitrarily large.

By avoiding the need to fragment messages into multiple packets, the simulator has fewer units of data to

simulate. Message-level simulation is an accurate approximation of a real network as long as messages are

relatively close in size to the maximum packet size on the real network (usually 1500 bytes on the Internet).

Most messages in PIER are under 2KB.

Our simulator includes support for three standard network topology types (star, transit-stub, and

the King model [32]) and three congestion models (no congestion, fair queuing, and FIFO queuing). The

simulator does not currently simulate network loss (all messages are delivered), but it is capable of simulating

complete node failures.

3.2 Distributed Hash Tables (DHTs)

Internet-scale systems like PIER require robust communication substrates that keep track of the

nodes currently participating in the system, and reliably direct traffic between the participants as nodes join

and leave. One approach to this problem uses a central serverto maintain a directory of all the participants

and their direct IP addresses (the original “Napster” model[57], also used in PeerDB [59]). However, this

solution requires an expensive, well-administered, highly available central server, placing control of (and

liability for) the system in the hands of the organization that administers that central server.

Instead of a central server, PIER uses a decentralized routing infrastructure, provided by an overlay

network. DHTs are a popular class of overlay networks that provide location independence by assigning

every node and object an identifier in an abstract identifier space. The DHT maintains a dynamic mapping

from the abstract identifier space to actual nodes in the system, and with high probability provides consistent

routing such that at any given time any node that attempts to resolve an identifier to a node will discover the

same mapping.
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Figure 3.3: Simulation Environment - The simulator uses oneMain Scheduler and priority queue for all
nodes. Simulated events are annotated with virtual node identifiers that are used to demultiplex the events
to appropriate instances of the Program objects. Out-boundnetwork messages are handled by the network
model, which uses a topology and congestion model to calculate when the network event should be executed
by the program. Some congestion models may reschedule an event in the queue if another out-bound message
later affects the calculation.

While the core of the DHT is simply a router for the abstract identifier space, it is straightforward

to include a hash-table like interface where the hash buckets are distributed throughout the network. The

DHT in PIER provides a hash table’s traditionalget andput methods as well as additional object access

and maintenance methods. For modularity, the DHT in PIER is divided into three components: therouter, an

object managerand aDHT wrapperthat implements the basic API. The components are shown in Figure 3.4.

The router contains the peer to peer overlay network routingprotocol (introduced in Section 2.3) of

which there are many options. We currently use Bamboo [66] (described in Section 2.3.1), although PIER is

agnostic to the actual algorithm, and used other DHTs including CAN [63] and Chord [74] in various stages

of its development. We chose Bamboo since it is implemented in Java, the implementation was robust, and

was developed locally.

In the following sections we discuss the naming of objects inthe DHT, the use of soft-state for

reliability, and a discussion of the API and its implementation.

3.2.1 Naming

Within the DHT every object has anrouting identifierand astorage name. In many cases the

storage name is used to compute the routing identifier, but itsome cases they may be different. The routing

identifier is used to determine which node in the network should be responsible for the object, while the
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Figure 3.4: The overlay network is composed of the router, object manager and the DHT wrapper. Both
the router and DHT wrapper exchange messages with other nodes via the network. The query processor
only interacts with the DHT wrapper, which in turn manages the choreography between the router and object
manager to fulfill the request.

storage name is used by the query processor to distinguish objects in requests.

The storage name of each object is composed of three parts: a namespace, partitioning key, and

suffix. All three parts are chosen by the application that gives the object to the DHT for handling. The query

processor uses the namespace to represent a table name or thename of a partial result set in a query. The

partitioning key is generated from one or more relational attributes used to index the tuple in the DHT (the

hashing attributes). Suffixes are tuple “uniquifiers”, chosen at random to minimize the chance of a spurious

name collision within a table. Any object with same namespace, partitioning key and suffix is considered the

same object and previous instances of the object are replaced with the new object.

By default, the DHT computes an object’s routing identifier using the namespace and partitioning

key; the suffix is only used to differentiate objects that would otherwise share the same storage name. In

our system the SHA1 hash of the namespace string concatenated with a separator (a period) and the string

representation of the partitioning key is used as the default routing identifier.

For some queries, the routing identifier may be pre-specified. For example in aggregation queries,

the node issuing the queries may want to be the root of the aggregation tree (details described in Chapter 4)

and provides it own ID as the root routing identifier. Data sent to the root via the DHT sill has a normal

storage name (namespace, partitioning key and suffix), but the storage name is not used for routing decisions.

When data is passed from the DHT to the query processor it is annotated with the storage name, but

not the routing identifier. Therefore the default operationof the DHT completely masks the routing identifiers

from the query processor. Only in special cases does the query processor provide a custom routing identifier

to the DHT.
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3.2.2 Routing

One of the key features of DHTs is their ability to handle churn in the set of member nodes. Instead

of a centralized directory of nodes in the system, each node keeps track of a selected set of “neighbors”, and

this neighbor table must be continually updated to be consistent with the actual membership in the network.

To keep this overhead low, most DHTs are designed so that eachnode maintains only a few neighbors, thus

reducing the volume of updates. As a consequence, any given node can only route directly to a handful of

other nodes. To reach arbitrary nodes, multi-hop routing isused.

In multi-hop routing, each node in the DHT may be required to forward messages for other nodes.

Forwarding entails deciding the next hop for the message based on its destination identifier. Most DHT

algorithms require that the message makes “forward progress” at each hop to prevent routing cycles. The

definition of “forward progress” is a key differentiator among the various DHT designs; a full discussion is

beyond the scope of this thesis, but is well-treated in [31].

A useful side effect of multi-hop routing is the ability of nodes along the forwarding path to inter-

cept messages before forwarding them to the next hop. Via an upcall from the DHT, the query processor can

inspect, modify or even drop a message. Upcalls play an important role in various aspects of efficient query

processing, as we will discuss in Chapter 4.

3.2.3 Soft State

Recall that PIER does not support persistent storage; instead it places the burden of ensuring per-

sistence on the originator of an object (itspublisher) using soft state, a key design principle in Internet

systems [14].

In soft state, a node stores each item for a relatively short time period, the object’ssoft-state lifetime,

after which the item is discarded. If the publisher wishes tokeep an object in the system for longer, it must

periodicallyrenewthe object, to extend its lifetime.

If a DHT node fails, any objects stored at that node will be lost and no longer available to the

system. When the publisher attempts to renew the object, itsrouting identifier will be mapped to a different

node than before, which will not recognize the storage identifier, causing the renewal to fail, and the publisher

must publish the item again, thereby making it available to the system again. Soft-state also has the side-effect

of being a natural garbage collector for data. If the publisher fails, any objects it published will eventually be

discarded.

The choice of a soft-state lifetime is given to the publisher, with the system enforcing a maximum

lifetime. Shorter lifetimes require more work by the publisher and the system to maintain persistence, but

increase object availability, since failures are detectedand fixed by the publisher faster. Longer lifetimes are

less work for the publisher but failures can go undetected for longer. The maximum lifetime protects the

system from having to expend resources storing an object whose publisher failed long ago.
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Figure 3.5:put andrenew perform a lookup to find the object’s identifier-to-IP mapping, after which they
can directly forward the object to the destination.send is very similar to aput , except the object is routed
to the destination in a single call. Whilesend uses fewer network messages, each message is larger since it
includes the object.get is done via a lookup followed by a request message and finally aresponse including
the object(s) requested.

3.2.4 Implementation

As listed in Table 3.2 the DHT supports a collection of inter-node and intra-node operations imple-

mented by the overlay wrapper. The hash table functionalityis provided by a pair of asynchronous inter-node

methods,put andget . Both are two-phase operations: first a lookup is performed to determine the identifier-

to-IP address mapping, then a direct point-to-point IP communication is used to perform the operation. The

lookup operation involves routing a small message via the overlay router. The destination node sends a direct

IP response to the sender which can now send the full message to the destination node. When theget oper-

ation completes, the DHT passes the data to the query processor through thehandleGet callback. The API

also supports a lightweight variant ofput calledrenew to renew an object’s soft-state lifetime. Therenew

method can only succeed if the item is already at the destination node; otherwise, therenew will fail and a

put must be performed. Thesend method is similar to aput , except upcalls are provided at each node along

the path to the destination. Figure 3.5 illustrates how eachof the operations is performed.

The four inter-node calls each have three variants. The default variant, the application supplies just

the storage identifier and the DHT computes the location identifier. The second variant allows the application

to supply both the storage identifier and routing identifier.Finally, in some cases the query processor does
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Inter-Node Operations
void get ([locationID — remoteAddress], namespace, key, callbackClient)
void put ([locationID — remoteAddress], namespace, key, suffix, object, lifetime)
void send ([locationID — remoteAddress], namespace, key, suffix, object, lifetime)
void renew ([locationID — remoteAddress], namespace, key, suffix, lifetime)

void handleGet (namespace, key, objects[])

Intra-Node Operations
void localScan(callbackClient)
void newData(callbackClient)
void upcall (callbackClient)

void handleLScan (namespace, key, object)
void handleNewData(namespace, key, object)
continueRoutinghandleUpcall (namespace, key, object, midway, locallySent)

Table 3.2: Selected methods provided by the overlay wrapper

not want to specify a routing identifier, but instead has determined the IP address of the remote node through

another means (for instance hard-coded in the query). In this last case the DHT is able to skip the lookup step

and can forward the message/request directly to the remote node.

The three intra-node operations are also key to the operation of the query processor.localScan and

handleLScan allow the query processor to view all the objects that are present at the local node.newData

andhandleNewData enable the query processor to be notified when a new object arrives at the node. Finally

upcall andhandleUpcall allow the query processor to intercept messages sent via thesend call. As an

optimization, all three types of requests,localScan , newData, andupcall can be limited by specifying a

storage identifier prefix that must be matched.

3.3 Query Processor

Having described the runtime environment and the overlay network, we can now turn our attention

to the processing of queries in PIER. It is important to note that PIER is unique in its aggressive reuse of

DHTs for a variety of purposes traditionally served by different components in a DBMS. These include: query

dissemination (Section 3.3.3), hash index (Sections 3.3.3and 4.3.1), range index (Section 3.3.3), partitioned

parallelism, operator state (Section 3.3.5), and hierarchical operators (Sections 4.2 and 4.3).

We introduce the PIER query processor by first describing itsdata representation and then explain-

ing the basic sequence of events for executing a snapshot or continuous query.

3.3.1 Data Representation and Access Methods

Recall that PIER does not maintain system metadata. As a result, every tuple in PIER is self-

describing, containing its table name, column names, and column types.
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PIER utilizes Java as its type system, and column values are stored as native Java objects. Java

supports arbitrarily complex data types, including nesting, inheritance and polymorphism. This provides

natural support for extensibility in the form of abstract data types, though PIER does not interpret these types

beyond accessing their Java methods.

Tuples enter the system through access methods, which can contact a variety of sources (the internal

DHT, remote web pages, files, JDBC, etc.) to fetch the data. The access method converts the data’s native

format into PIER’s tuple format and injects the tuple in the dataflow (Section 3.3.4). Any necessary type

inference or conversion is performed by the access method. Unless specified explicitly as part of the query,

the access method is unable to perform type checking; instead, type checking is deferred until further in the

processing when a comparison operator or function accessesthe value.

3.3.2 Life of a Query

For PIER we defined a native algebraic (“box and arrow”) dataflow language called UFL (which

stands for the “Unnamed Flow Language”). UFL is in the spiritof stream query systems like Aurora [2],

and router toolkits like Click [43]. UFL queries are direct specifications of physical query execution plans

(including types) in PIER, and we will refer to them as query plans from here on. A specification of the

language can be found in Appendix A. A graphical user interface called Lighthouse is available for more

conveniently “wiring up” UFL. PIER supports UFL graphs withcycles, though such recursive queries in

PIER are the topic of research beyond the scope of this thesis[50].

An UFL query plan is made up of one or more operator graphs calledopgraphs. Each individual

opgraph is a connected set of dataflow operators (the nodes) with the edges specifying dataflow between

operators (Section 3.3.4). Each operator is associated with a particular implementation.

Separate opgraphs are formed wherever the query redistributes data around the network and the

usual local dataflow channels of Section 3.3.4 are not used between sets of operators (similar to where a

distributed Exchange operator [26] would be placed). Instead a producer and a consumer in two separate

opgraphs are connected using the DHT (actually, a particular namespace within the DHT) as a rendezvous

point. Opgraphs are also the unit of dissemination (Section3.3.3), allowing different parts of the query to be

selectively sent to only the node(s) required by that portion of the query.

After a query is composed, the user application (the client)establishes a TCP connection with any

PIER node. The PIER node selected serves as the proxy node forthe user. The proxy node is responsible for

query parsing and dissemination, and for forwarding results to the client application.

Query parsing converts the UFL representation of the query into Java objects suitable for the query

executor. The parser does not need to perform type inference(UFL is a typed syntax) and cannot check the

existence or type of column references since there is no system catalog.

Once the query is parsed, each opgraph in the query plan must be disseminated to the nodes needed

to process that portion of the query (Section 3.3.3). When a node receives an opgraph it creates an instance

of each operator in the graph (Section 3.3.5), and establishes the dataflow links (Section 3.3.4) between the
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operators.

During execution, any node executing an opgraph may producean answer tuple. The tuple or

batches of tuples are forwarded to the client’s proxy node. The proxy then delivers the tuples to the client’s

application.

A node continues to execute an opgraph until a timeout specified in the query expires. Timeouts

are used for both snapshot and continuous queries. A naturalalternative for snapshot queries would be to

wait until the dataflow delivers an EOF (or similar message).This has a number of problems. First, in PIER,

the dataflow source may be a massively distributed data source such as the DHT. In this case, the data may

be coming from an arbitrary subset of nodes in the entire system, and the node executing the opgraph would

need to maintain the list of all live nodes, even under systemchurn. Second, EOFs are only useful if messages

sent over the network are delivered in-order, a guarantee our message layer does not provide. By contrast,

timeouts are simple and applicable to both snapshot and continuous queries. The burden of selecting the

proper timeout is left to the query writer. This is akin to thesoft-state handling of objects in the DHT.

Given this overview, we now expand upon query disseminationand indexing, the operators, and

dataflow between the operators.

3.3.3 Query Dissemination and Indexing

A non-trivial aspect of a distributed query system is to efficiently disseminate queries to the par-

ticipating nodes. The simplest form of query disseminationis to broadcast each opgraph to every node.

Broadcast (and the more specialized multicast) in a DHT has been studied by many others [11, 64]. The

method we describe here is based upon the distribution tree techniques presented in [11].

PIER maintains adistribution treefor use by all queries; multiple trees can be supported for re-

liability and load balancing. Upon joining the network, each PIER node routes a message (usingsend)

containing its node identifier toward a well-known root identifier that is hard-coded in PIER. The node at the

first hop receives an upcall with the message, records the node identifier contained in the message, and drops

the message. This process creates a tree, where each messageinforms a parent node about a new child. A

node’s depth in the tree is equivalent to the number of hops its message would have taken to reach the root.

The shape of the tree (fanout, height, imbalance) is dependent on the DHT’s routing algorithm. For example,

Bamboo produces distribution trees that are have high fan-in for well connected nodes, Chord [74] produces

trees that are (roughly) binomial; Koorde [41] produces trees that are (roughly) balanced binary. The tree is

maintained using soft-state, so periodic messages allow itto adapt to membership changes.

To broadcast an opgraph, the proxy node forwards the opgraphmessage to the hard-coded ID for

the root of the distribution tree. The root then sends a copy to each “child” identifier it had recorded from the

previous phase, which then forwards it on recursively. Multiple distribution trees can be used for robustness.

Broadcasting is not efficient or scalable, so whenever possible we want to send an opgraph to only

those nodes that have tuples needed to process the query. Just like a DBMS uses a disk-based index to read

the fewest disk blocks, PIER can use distributed indexes to determine the subset of network nodes needed
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based on a predicate in an opgraph. In this respect query dissemination is really an example of a distributed

indexing problem3.

PIER currently has three kinds of indexes: a broadcast-predicate index, an equality-predicate index,

and a range-predicate index. The broadcast-predicate index is the distribution tree described above: it allows

a query that ranges over all the data to find all the data. Equality predicates in PIER are directly supported by

the DHT: operations that need to find a specific value of a partitioning key can be routed to the relevant node

using the DHT. For range search, PIER uses a technique calleda Prefix Hash Tree(PHT), which makes use

of the DHT for addressing and storage. The PHT is essentiallya resilient distributed trie implemented over

DHTs. A full description of the PHT algorithm can be found in [65]. The index facility in PIER is extensible,

so additional indexes (that may or may not use the DHT) can be also supported in the future.

Note that a primary index in PIER is achieved by publishing a table into the DHT or PHT with the

partitioning attributes serving as the index key. Secondary indexes are also possible to create: they are simply

tables of (index-key, tupleID) pairs, published withindex-keyas the partitioning key. ThetupleID has to be

an identifier that PIER can use to access the tuple (e.g., a DHTname). PIER provides no automated logic to

maintain consistency between the secondary index and the base tuples.

In addition to the query dissemination problem described above, PIER also uses its distributed

indexing facility in manners more analogous to a traditional DBMS. PIER can use a primary index as the

inner relation of a Fetch Matches join [53], which is essentially a distributed index join. In this case, each

call to the index is like disseminating a small single-tablesubquery within the join algorithm. Finally, PIER

can be used to take advantage of secondary indexes, or indexes that whose values are the keys for another

index. This is achieved by a query explicitly specifying a semi-join between the secondary index and the

original table; the index serves as the outer relation of a Fetch Matches join that follows thetupleID to fetch

the correct tuples from the correct nodes. Note that this semi-join can be situated as the inner relation of

a Fetch Matches join, which achieves the effect of a distributed index join over a secondary index. These

methods are discuss further in Chapter 4.

3.3.4 Local Dataflow

Once an opgraph arrives at a node, the local dataflow is set up.A key feature to the design of the

intra-site dataflow is the decoupling of the control flow and dataflow within the execution engine.

Recall that PIER’s event-driven model prohibits handlers from blocking. As a result, PIER is unable

to make use of the widely-used iterator (“pull”) model. Instead, PIER adopts a “non-blocking iterator” model

that uses pull for control messages, and push for the dataflow. In a query tree, parent operators are connected

to their children via a traditional control channel based onfunction calls. Asynchronous requests for sets of

data (probes) are issued and flow from parent to child along the graph, muchlike theopen call in iterators.

During these requests, each operator sets up its relevant state on the heap. Once the probe has generated

3We do not discuss the role of node-local indexes that enable fast access to data stored at that node. PIER does this in a traditional
fashion; its main memory access method uses a hash tables data structure.
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state in each of the necessary operators in the opgraph, the stack is unwound as the operators return from the

function call initiating the probe.

When an access method receives a probe, it typically registers for a callback (such as from the

DHT) on data arrival, or yields and schedules a timer event with the Main Scheduler. There are three types

of probes: set, stream, and set-predicate. Set probes are a request for all data that is presently available at this

node at this time (excluding any local I/O such as disk). Stream probes are a continuous request for new data

as it becomes available at this node, existing data is not retrieved. Finally, a predicate can be embedded in

a set probe that limits the data retrieved. This is a standardoptimization to push-down a selection predicate

into a data source and permits index lookups.

When a tuple arrives at a node via an access method, it is pushed from child to parent in the opgraph

via a data channel that is also based on simple function calls: each operator calls its parent with the tuple as

an argument. The tuple will continue to flow from child to parent in the plan until either it reaches an operator

that removes it from the dataflow (such as a selection), it is consumed by an operator that stores it awaiting

more tuples (such as join or group-by), or it enters a queue operator. At that point, the call stack unwinds.

The process is repeated for each tuple that matches the probe, so multiple tuples may be pushed for one probe

request.

Queues are inserted into opgraphs as places where dataflow processing “comes up for air” and

yields control back to the Main Scheduler. When a queue receives a tuple, it registers a timer event (with

zero delay). When the scheduler is ready to execute the queue’s timer event, the queue continues the tuple’s

flow from child to parent through the opgraph. Queues enable recursive dataflows. Without queues, the stack

depth would increase with each level in the recursion. A queue allows the stack to unwind between each

successive level. Additionally since the queue yields control, starvation of other queries/opgraphs does not

occur.

An arbitrary tag is assigned to each probe request, the built-in PIER operators use an incrementing

counter to generate unique tags. The same tag is then sent with the data requested by that probe. The tag

allows for arbitrary reordering of nested probes while still allowing operators to match the data with their

stored state (in the iterator model this is not needed since at most oneget-nextrequest is outstanding on each

dataflow edge).

Finally, the local dataflow allows signals to be passed from child to parent. The first signal currently

supported is an end-of-probe signal that is generated when adata source has finished pushing all tuples that

match a set (or predicate-set) probe.

3.3.5 Operators

PIER is equipped with 15 logical operators and 29 physical operators (some logical operators have

multiple implementations). Most of the operators are similar to those in a DBMS, however PIER also uses

a number of non-traditional operators, particularly for the access methods. Table 3.3 lists the operators and

implementations.
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Basic Operators
Operator Implementation Brief Description

selection Basic Evaluates a predicate against a tuple.
projection Basic, Generate Modifies the attributes of a tuple.
tee Basic Logically combines all parents to appear as one.
union Basic Logically combines all children to appear as one.
join SymmetricHash,

Index
Performs the relational equi-inner-join operation.

group-by Basic, DualFlow Aggregates tuples with the same values for the group-by
fields.

duplication
elimination

Basic Eliminates duplicate tuples.

scan DHT, DHTMes-
sage, IP, JDBC,
CSV

Retrieves tuples from a data source.

Other Operators
Operator Implementation Brief Description

put DHT, DHTMes-
sage, IP, Bloom,
Eddy

Stores a tuple in non-query specific storage mechanisms.

result NetSend Sends result tuples to query requester.
flow control Basic Controls the timing and flow of data through an opgraph.
queue Basic Temporarily holds tuples during processing.
cache MemCache,

MemUpdateCache
Stores tuples during the execution of the query.

eddy Basic Dynamically reorders the execution of joins in query
plan as described in [4].

null Null, NullSource,
NullSink

A placeholder for operators that do not match other ex-
isting operators.

Table 3.3: Selected list of PIER operators and implementations.
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Currently, all operators in PIER use in-memory algorithms,with no spilling to disk. This is mainly

a result of PIER not having a buffer manager or storage subsystem. Since network throughput and latency are

the dominating bottlenecks this design decision does not have a large effect on PIER’s current usage model.

Physical operators can be classified into four main categories: sources, sinks, pass-through, and

flow-modifying. Sources are operators that upon receiving aprobe fetch or create zero or more tuples. If the

source is not capable of handling a particular probe (for example it cannot evaluate a predicate-set probe) the

probe is passed to its children if any exist. Depending on thetype of probe and the data source, the source

operator can optionally produce a EOP signal.

Sinks are operators that consume tuples removing them from the dataflow. The result operator is

the most common sink operator, but others such as an operatorto insert data into the DHT are also sinks.

Pass-through operators modify or drop data as it moves through the dataflow. These operators do

not respond to probes and pass them through to their children. Selection and projection are examples of

pass-through operators.

Flow-modifying operators may change or issue new probes during the course of processing. Ex-

amples of flow-modifying operators are joins, some group-byoperator implementations and the control flow

operator. For example in an index join, when the join operator receives an outer tuple it will issue a predicate-

set probe for the matching tuples from the inner relation. The flow control operator issues probes based on a

number of events such as the starting of a query, periodically, or based on the number or rate of tuples arriving

at a data source.

Throughout the development of PIER the granularity and scope of operators have changed. In the

early version of PIER monolithic operators that handled multiple aspects of the dataflow were used. For

example the first join was called a DHT join and a single operator handled fetching data from the DHT,

evaluating selection predicates, and joining tuples. These monolithic operators were broken up into smaller

operators that are better-scoped and easily reused for multiple query plans.

3.3.6 Flow Control

Related to the evolution of the operators, was the changes inmanaging flow control. For example,

the initial implementation of the group-by operator was designed as a pass-though operator. At the start of

the query the data source would begin receiving/retrievingtuples. Sometime later when a result was desired,

the flow control operator at the root of the tree would issue a set probe down the tree to the data source. The

data source would then send all the collected tuples received. The group-by operator would aggregate the

tuples and then send the result tuple(s) once it received theend-of-probe signal from the source.

This design suffered from two problems. First, the data source was responsible for storing the data

until the probe was issued. Second, the flow control operatorhad limited information to decide when to issue

the probe. Often a simple timer in the flow control operator was used to trigger the probe. This is often not

the best method and will be discussed in depth in Section 4.2.

A later implementation of the group-by operator integratedfunctions of the flow control operator
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directly into the group-by operator. The group-by operator, instead of the flow control operator would issue

probes to the data source. While this allowed the group-by operator more flexibility in timing probes and

result generation, it still required the source to store thetuples. Additionally, this solution was not elegant

with two operators (the group-by and flow control operators)having similar functions and duplicated code.

The final implementation of the group-by operator, called “Dual Flow”, uses two flow control

operators in the query plan. One flow control operator pulls data from the source into the group-by operator,

which aggregates the data as it arrives. A second flow controloperator is used to retrieve the current set of

aggregates/results from the group-by operator. This design allows data to be immediately aggregated when it

arrives requiring no storage. The second flow control operator can issue a stream probe allowing the group-by

operator to determine when to generate result tuples, or theflow control operator can control result generation

and issue a set probe.

3.3.7 Error Handling

Error handling can be especially difficult given some of PIER’s design decisions. The lack of

system catalogs means queries can be not be statically validated against a schema. The existence of an

attribute or its data type is not known until the query is executed. Additionally, the primary query interface

is UFL, which unlike SQL is a low-level physical dataflow description that is unfamiliar to most users. All

but the best query writers will require debugging tools (beyond a simulator) to understand what is happening

inside the execution of the plan. Finally, runtime errors caused by unavailable data sources or other transient

conditions can easily overwhelm a client if every node processing the query was to send an error message.

PIER provides a number of facilities to help a user deal with errors including: optional error mes-

sages, silent dropping of malformed tuples, and the abilityto view a copy of tuples flowing into or out of any

dataflow operator.

In a wide-area decentralized application it is likely that PIER will encounter tuples that do not

match the schema expected by a query. This can be caused by a poorly written query, different versions

of the data source at the node, or errors from the data source itself. PIER uses a “best effort” policy when

processing such data. Query operators attempt to process each tuple, but if a tuple does not contain the field

of the proper type specified in the query, the tuple is simply discarded. Likewise if a comparison (or in

general any function) cannot be processed because a field is of an incompatible type, then the tuple is also

discarded. An optional error message can be requested whichis forwarded to the user. This feature is useful

to debug the initial operation of a query, but when there is a fault in a production system the number of error

messages can easily overwhelm a client. By default, tuple errors are silently dropped, but it can be enabled

on an operator-by-operator basis.

The input or output tuple streams to each operator can be “tapped” and forwarded to the user client.

The user specifies whether to activate this feature in the query request. During the execution of the query

PIER will then send a duplicate copy of each input/output tuple to the user client as if it was a result tuple.

This enables the user to peek inside a running dataflow and seewhich tuples (and their schemas) are in which
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parts of a dataflow. This feature is also enabled on an operator-by-operator basis. There is no design reason

this feature could not be activated and deactivated after a query was started, however the interface to do this

was never implemented.

Since error messages and internal dataflow streams are both forwarded directly to the PIER proxy

node of the client, there is no opportunity to drop duplicatemessages or provide a global rate-control mech-

anism. PIER does allow the client to specify a limit to the number of messages received from any one node,

however in very large networks this has limited benefit. Thisleads to the default policy that all but parser

errors (which originate only from the proxy node itself) aresilently dropped.

3.3.8 No Global Synchronization

PIER nodes are only loosely synchronized, where the error insynchronization is based on the

longest delay between any two nodes in the system at any giventime. An opgraph is executed as soon as it

is received by a node. Therefore it is possible that one node will begin processing an opgraph and send data

to another node that has yet to receive the query. As a consequence, PIER’s query operators must be capable

of “catching up” when they start, by processing any data thatmay have already arrived. This depends on the

data sources (usually the DHT) to buffer the data for short time until the query is started on the local node. In

our experiments tuples sent via the DHT have at least a one minute timeout which is more than sufficient.
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Chapter 4

Query Processing

In this chapter we describe the main query processing algorithms, including aggregation and joins.

Our goal is to develop algorithms that optimize three key metrics: minimize overall network usage, minimize

answer latency, and distribute network communication equally among all participating nodes. We present

experimental results alongside the algorithm descriptions. Therefore, we start this chapter with a description

of the experimental setup.

4.1 Experimental Setup

Traditionally, database scalability is measured in terms of database sizes. In the Internet context,

it is also important to take into account the network characteristics and the number of nodes in the system.

Even when there are plenty of computation and storage resources, the performance of a system can degrade

due to network latency overheads and limited network capacity. Although adding more nodes to the system

increases the available resources, it can also increase latencies. The increase in latency is an artifact of the

DHT algorithm we use to route data in PIER (as described in Section 3.2). In particular, with Bamboo – the

DHT scheme we use in our system – a data item that is sent between two arbitrary nodes in the system will

traverselogbn intermediate nodes on average, whereb is a parameter of the DHT (set to 16 in our tests) and

n is the number of total nodes in systems.

To illustrate these impacts on our system’s performance we use a variety of metrics, including the

maximum in-bound traffic at a node, the aggregate traffic in the system, and the time to receive the last or the

k-th result tuple.

The simulator and the implementation use the same code base.The simulator allows us to scale up

to 10,000 nodes, after which the simulation no longer fits in RAM – a limitation of the simulation, not of the

PIER architecture itself. The simulator’s scalability comes at the expense of ignoring the cross-traffic in the

network and the CPU and memory utilization. We use the King model topology [32] with each node having

a 1.5Mbps in-bound and out-bound link capacity. We use FIFO messaging queuing to model network traffic.
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API Function Example for AVERAGE

this.count++;
void addvalue(value)

this.sum += value;

valuegetresult() return sum/count;
this.count += psr.count;

void combinePSR(psr)
this.sum += psr.sum;

Table 4.1: API for aggregation functions and an example implementation of an AVERAGE function.

In addition, we make two simplifying assumptions. First, inour evaluation we focus on the band-

width and latency bottlenecks, and ignore the computation and memory overheads of query processing. Sec-

ond, we implicitly assume that data changes at a rate higher than the rate of incoming queries. As a result,

the data needs to be shipped from source nodes to computationnodes for every query operation.

For each data point, the same experiment was run ten times with the average plotted and the error-

bars indicating the average plus and minus the standard deviation. To compute the network communication

caused by the query workload (and discount the DHT maintenance and query dissemination traffic) a sec-

ond identical experiment was performed with the query beingdisseminated but not executed. The network

communication measurements presented are the difference between the two experiments.

4.2 Aggregation

Aggregation is the process of condensing a large collectionof a data into a single value. Aggrega-

tion is commonly combined with grouping such that a set of tuples is partitioned into a number of groups and

an aggregate value is reported for each group.

An aggregation function can be defined using two operations on the aggregate state: add a value to

the aggregate, and get the value of aggregate. The aggregatefunction’s running state is called a partial state

record (PSR). Some aggregates such as MAX, MIN, SUM, AVERAGEare relatively straightforward, while

other aggregates such as histograms and spectral Bloom filters [15] have more complex operation implemen-

tations. A special property of PSRs is that they can also be combined together using a third operation defined

for the aggregation function. The API and an example are detailed in Table 4.1.

In [27] three classes of aggregate functions are defined: distributive, algebraic, and holistic. [54]

expands the classification of aggregations with two additional classes: unique and content sensitive. We

primarily consider distributive and algebraic aggregations which have the special property of having constant

sized PSRs. Content sensitive aggregates have PSRs that aresized proportional to some statistical property

of the data, such as the range or variance. Our techniques canalso apply to these functions insofar as the

properties of the data allow the size of the PSR to be approximated as a constant. Holistic (and unique)

functions have PSRs that are proportional to the number of (unique) data items and do not benefit from our

algorithms although they can still be correctly computed.
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We divide our discussion of execution techniques into two groups. First we describe “one-shot”

aggregates where the aggregate is computed once for a staticset of tuples, and then we describe continuous

queries where the aggregate is computed periodically over adynamic stream of data. We discuss these with

respect to relationR and the following generic COUNT query:

SELECT count( * )
FROM R;

4.2.1 One-Shot Aggregation Queries

The simplest method for computing an aggregate is to collecteach individual source tuple in one

location, and then calculate the aggregate. In this scenario, the network usage is proportional to the number of

tuples,t, multiplied by the size of the aggregate field(s),s, being aggregated. The drawbacks of this method

are that it requires a significant amount of communication and it concentrates the entire thein-bandwidthload

(t × s) onto a single root node. However, by taking advantage of theability to first aggregate sets of tuples

into PSRs and then aggregate those PSRs together we can develop more efficient algorithms in the spirit of

systems like TAG [54].

We can easily decrease the communication by having each nodeaggregate its local data first, and

then send that PSR to the root. The total communication bandwidth is now proportional to the number of

nodes,n, in the system and the size of a PSR,p. In most casesn≪ t andp ≃ s son× p≪ t× s. Therefore

we only consider algorithms which communicate PSRs insteadof the source tuple field.

For one-shot aggregation queries we develop eight algorithms on four design dimensions as shown

in Figure 4.1. The first dimension,structure, determines the type of dataflow topology used: one level or

multiple levels. The simplest algorithms are one level, sending all the PSRs directly to a single root node.

The multi-level algorithms form a tree where each node except the root has a single parent to which it sends

its PSRs to. We describe specific tree algorithms shortly.

The second dimension indicates whether there is in-networkaggregation of the data. If there is no

in-network aggregation each node will only forward PSRs towards the root instead of combining PSRs first

and only forwarding the combined PSR. In-network aggregation only applies to multi-level topologies which

have trees with interior nodes. If there is just a single level, there are only leaf nodes and one root, there are no

opportunities for in-network aggregation. Multi-level topologies with no in-network aggregation require that

interior tree nodes send multiple messages to their parents, since each child’s PSR is forwarded individually.

These algorithms are not beneficial since they involve substantially more network communication. These

extra messages do not improve either of the other metrics since the latency is increased and the root will

still receive a message from each node. We only consider thisgroup of algorithms to show the benefit of

in-network aggregation.

The third dimension represents the routing method. The options are to use IP routing or the DHT

routing. With IP routing the query hard-codes the IP socket address where each node should forward its

PSR to. This method is feasible when the query only needs to specify a single root node, which could be
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Figure 4.1: Various one-shot aggregation algorithms over four dimensions. Algorithms in dashed boxes are
not evaluated via simulation because they are not implemented in PIER.

the node that issues the query. For a multi-level hierarchy,each of the interior nodes must be predetermined

and assigned children. Building this topology is equivalent to using an overlay network, and requires an

additional out-of-band routing algorithm. We do not propose any such algorithm since the DHT is one such

routing algorithm.

When DHT routing is used the query only needs to specify a routing identifier for the root. For one-

level topologies, the DHTput method is invoked, while for multi-level topologies the DHTsend method

with upcalls is used to form a tree. The tree is dynamically formed using the same process used in query

broadcasting (see Section 3.3.3). Each node computes its local aggregate and uses the DHTsend call to

send the PSR towards the root identifier specified in the query. At the first hop along the routing path, PIER

receives an upcall and processes the PSR. If combined with in-network aggregation PIER will combine the

received PSR with its own local PSR. After waiting for more PSRs to arrive from other nodes, the node then

forwards the PSR towards the root using the DHTsend . If there is no in-network aggregation the PSR will

be immediately forwarded towards the root using the DHTsend . At the next hop (one step closer to the root)

that PIER node repeats the same procedure. Eventually the root will receive PSRs that combine to include

data from every node and the root can produce the final global answer.

Finally, the timing dimension determines how each node decides when to send its PSR to its parent

(for multi-level topologies) and when the root forwards an answer to the requester (for all topologies). This is

necessary because aggregation is a blocking operation and the result can not be produced until all the data has

been processed. The optimal timing (which has the lowest latency without missing any PSRs) is immediately
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Figure 4.2: Total network communication for one-shot aggregation algorithms with varying number of nodes.

after the node receives all the PSRs from its children. For one-level topologies this is after the root receives

a PSR from each node in the system. However in practice, the root will not know a priori how many nodes

are in the system and so the optimal solution is often unattainable. Instead, we can use a query-specified

timeout condition to determine when to send. A simple condition is a fixed timeout, such as five seconds.

The condition can also be specified as a rate, such as when the node receives less than one PSR per five

seconds. The timeout strategy attempts to guess at when all the data has been received. If the timeout occurs

too soon, the node will be required to send an additional PSR with the additional data. If the timeout occurs

late, the end-user latency is unnecessarily increased.

Using these four dimensions we can create eight algorithms,seven of which can be directly imple-

mented in PIER using different query plans. DHT-Hi-Optimalis not implemented in PIER since the topology

generated by the DHT is not knowna priori. Without knowing the topology the expected number of mes-

sages to receive at each node can not be predetermined. A brief description of each algorithm can be found

in Appendix B.

Figure 4.2 shows that overall bandwidth usage for the seven implemented algorithms for various

sized networks and a timeout condition of five seconds. The IP-1L-Optimal always has the least overall

bandwidth usage. This is expected as each node sends exactlyone PSR except the root which sends a

single result tuple. The IP-1L-Timeout also has low overallbandwidth usage, however in larger networks

the timeout is too short, so some PSRs arrive after the timeout. The root must then revise the answer multiple

times resulting in slightly higher communication costs (the difference is too small to be noticeable in the

figure). The DHT-1L-Optimal and DHT-1L-Timeout algorithmsrequire more bandwidth that IP-1L-Optimal

and IP-1L-Timeout due to the DHT message overheads.

The DHT-Hi-Timeout falls in the middle of graph since the interior nodes will send at least two
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PSRs. The cause of this extra communication is due to the lackof topology information (nodes do not know

their depth in the tree) and a single timeout condition is imposed on all nodes. In the DHT-Hi-Optimal, nodes

would know the topology and would be able to determine if theywere leaf nodes. Leaf nodes do not require

a timeout since they do not receive PSRs from other nodes. Therefore leaf nodes should send their PSR

immediately. Interior nodes with only leaf nodes as children would then send their PSRs next (or have the

next lowest timeout) and so forth up the tree to the root whichwould send last (or have the highest timeout).

Without this information, every node must first act as if it were a leaf node and send its local PSR

towards the root. Nodes that receive data from their children now know they are interior nodes and will send

a second PSR based on the data received from their children. Interior nodes higher in the tree will receive the

second round of PSRs and send a third round of PSRs. Eventually only the root will receive additional PSRs

and the final answer will be produced. The total number of message sent is based on the number of nodes at

each level of the tree.

The DHT-ML-Optimal and DHT-ML-Timeout algorithms illustrate the cost of not using in-network

processing. Both algorithms use significantly more bandwidth since each node’s PSR is simply forwarded to

root and not combined with other PSRs.

In Figure 4.3 we can see that in-network processing (DHT-Hi-Timeout) has the distinct advantage

of significantly reducing the bytes received at the root and distributing that load to other nodes in the system.

The nodes receiving additional load may be at any level (except the leaves) in the tree, since the load is

based on the number of direct children, not the size of the subtree. Multi-level algorithms with no in-network

processing also cause other nodes to receive additional messages but do not change the load on the root.

Nodes that are higher in the tree (culminating with the root)receive more messages than nodes lower in the

tree. Single level algorithms simply have high load at the single root.

The final metric we consider for these algorithms is latency for the final answer to be received,

as shown in Figure 4.4. This metric allows us to see the big difference between the optimal timing and

timeout methods. Algorithms that have optimal timing produce final answers earlier than those that must

wait for a timeout to occur. This is particularly noticeablewith small networks and less noticeable with larger

networks. Furthermore, in very large networks the timeout may be too short, which causes the initial results

to be revised later. While these early results do have some value they also use more network communication.

This highlights the general problem with timeouts which arefixed and are a “one size fits all” solution. For

continuous queries that we discuss next, we are able to improve timeouts by adapting to the conditions of the

network and topology.

In summary, hierarchical (multi-level) in-network processing aggregation query plans require more

overall bandwidth but are better at spreading that load morefairly. The timing method not only effects

overall bandwidth, since early timeouts cause extra messages, but also latency is dictated by timing. While

optimal timing is (not surprisingly) best, it is often not feasible since the number of participating nodes and/or

topology are not knowna priori.
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4.2.2 Continuous Aggregation Queries

While the semantics of continuous queries are an entire research topic (see [12, 3]), PIER adopts

a simple model for continuous aggregation queries. Each query specifies the frequency of epochs with the

first epoch coinciding with the start of the query. For each epoch, the query results are solely based on the

data fetched from the data source at the start of the epoch. Itis the responsibility of the data source to only

provide current/valid data. This is closest to semantics commonly referred to asnon-overlapping sliding

windows. Other query semantics are possible using the built-in query operators. For example,overlapping

sliding windowscan be achieved through the use of the MemUpdateCache operator (see Section 3.3.5) which

stores tuples for a specified duration of time.

With respect to the distributed aggregation computation, continuous queries can be seen as issuing

a one-shot query periodically with an extra field containingan incrementing epoch number. A straw-man im-

plementation of executing a continuous query is to simply execute every epoch as a separate query. However,

the primary difference to one-shot queries is that the queryengine knows that the query will be essentially

“issued” periodically. Thus the system can store the topology and timing from the previous epoch to use

again or adapt in the next epoch. This enables a wider range ofpossible algorithms/query plans. Some of the

new query plans can provide lower latency and/or decreased communication as compared to the straw-man

implementation.

With one-shot queries we identified four dimensions for aggregation algorithms (structure, in-

network computation, routing, and timing). For continuousqueries we add a new dimension, dynamism.

Dynamism indicates whether the topology changes constantly between epochs or if the topology is held fixed

(or stable) after the first epoch except to recover from failures. Normally, the DHT is prone to changing routes

over time, sometimes changing with each message. This is because the DHT router is trying to greedily opti-

mize end-to-end latency1. When a message is sent on one path, that path may become more expensive by the

time the next message is sent and another path may now be faster. For many applications this is the desired

behavior, however, for applications that want to use the same path for multiple messages, the application

layer must store the path and force the DHT to use that path. This is not the same as source routing, since

each node only stores and remembers the next hop. Instead it is more similar to network protocols that use

virtual channels.

Continuous queries also enable us to solve a problem that one-shot queries suffer. The DHT routing

may create trees that are not well balanced or that have very high in-degree for a few nodes. In one-shot

queries we noticed that if one node, such as the root, has a very high in-degree, the latency is longer. The

DHT may create trees that have nodes (maybe not the root) thatalso have high in-degree. Recall Figure 4.3,

which shows the in-bound network communication (which is proportional to the in-degree since all PSR

messages are of equal size) for some nodes during a one-shot query. The DHT-based hierarchical aggregation

(DHT-Hi-Timeout) query shows that three nodes receive overfive times the data of most nodes and another

six nodes receive over twice the data of the remaining 8180 nodes. This imbalance of in-degree and network

1This is not a requirement of a DHT implementation, rather this is often a design choice made by DHT designers.
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traffic can lead to network congestion and increased latency.

With a one-shot query there is no opportunity to correct the imbalance. However, with continuous

queries an in-degree imbalance in one epoch can be correctedin future epochs, improving the performance of

the query over time. Nodes with high in-degree can send a message to some of their children instructing them

to use a different parent. Over a number of epochs the tree will stabilize to a new topology that enforces a

maximum in-degree policy. While the forming of this tree requires additional messaging, continuous queries

enable the amortizing of this cost over the length of the query. We call this methodtreerouting.

In PIER we use a simple implementation to enforce the maximumin-degree. When a node sends

a message to a parent, it appends two fields to the message; onefield that includes the node’s height in the

tree and a second field advertising the number of additional children that the node and all of its children can

handle. For a leaf node, the number of children that the node can handle is a fixed number set to 64 by default.

For an interior node, that number is the sum of the values mostrecently reported by its children plus its fixed

value minus the number of active children. The height of a node is calculated by adding 1 to the maximum

height value reported by any active child, or 0 if the node does not have any active children.

When a node receives a message from a child it determines whether this child is in its list of active

children. If the node is in the list, the record for the child is updated to reflect the information in the latest

message received. If the child is not in the list and there is afree slot at this node, the child is simply added

to the list active children. However, if the child is new and there are no free slots at this node, the node will

select a replacement parent for the child. The replacement parent is chosen by selecting the active child with

the lowest height and the highest number of advertised free slots. Once the replacement is chosen the parent

sends a redirect message to the child. Upon receiving the redirect message, the child will now send messages

to the new parent until it stops responding or sends the childanother redirect message.

Finally, we also have two additional timing strategies for continuous queries,learnedandtopology.

In the learned scheme, interior tree nodes maintain a list oftheir children across epochs. Once a node receives

data for the current epoch from each of those nodes it can thensend its PSR to its parent. If the tree is stable,

after the first epoch the timing will be optimal. In practice the tree may not be stable, a node that does not

receive data from a child after a fixed timeout (i.e. the length of an epoch) the child is removed from the

list and the received data is sent. If a node receives a PSR from a new node, it is immediately added to the

children list. This method could be further improved by replacing the fixed timeout with an adaptive timeout

based on the each child’s average latency and the variance. The fixed timeout is used in our experiments.

The topology timing method is very similar to the learned method. The one difference is when a

node instructs a child to use a new parent, it immediately removes that child from its child list instead of

waiting for the fixed timeout. This is strictly better than the learned method which will incur unnecessary

timeouts, increasing latency while the tree is being optimized. This method is only applicable if the tree

routing method is used.

Using these five dimensions we can create a plethora of algorithms many of which are implemented

in PIER. Figures 4.5, 4.6 and 4.7 show the options. In Appendix C each of the algorithms is briefly described.

We now show a number of experiments to highlight the important differences. In all experiments we continue
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Figure 4.5: Various continuous aggregation query algorithms over five dimensions.

to use a simple COUNT aggregation query with a new epoch everyfive seconds and a total of 30 epochs for

a total of five minutes. All timeouts are also five seconds. We examine the total network communication and

latency for a system with varying number of nodes.

In the first set of simulations we explore the difference in the timing dimension when all data is sent

directly to the root. The root is the only node making a timingdecision, which is when to produce the result.

In Figure 4.8 we can see that in this scenario, timing has no discernible impact on network communication,

and the only difference is between the algorithms that use direct IP communication and the DHT routing.

The direct IP methods show near linear growth in the network communication, while the DHT methods show

faster than linear growth because of the DHT routing overheads. Figure 4.9 shows the clear differences

between the three timing methods. Regardless of the routing, optimal and learned perform the same, with

timeouts incurring additional latency.

The learned timing method is effective in determining the root’s children and triggering result

generation once all the data has been received. This is good since the optimal timing method is not practical

in real systems where the complete topology for all epochs isnot knowna priori. We no longer show results

for the timeout method since it is strictly worse than learned method.

We next examine the differences between the structure of communication and the use of in-network

aggregation. As with the one-shot queries Figure 4.10 showsthat sending the PSRs directly to the root using

IP is optimal with respect to overall network communication. DHT-ML-Learned used the most bandwidth

since every node sends its PSR to each node on the route to the root, however at those nodes the PSRs are

not combined. In this situation the same PSR is being sent multiple times resulting in excessive network

traffic. The hierarchical aggregation, DHT-Hi-Learned, while not as good as optimal, performs well. Sur-

prisingly, sending the PSRs directly to the root also using alarge amount of bandwidth even though each



42

Figure 4.6: Various continuous aggregation query algorithms over five dimensions. Algorithms in dashed
boxes are not evaluated via simulation because they are not implemented in PIER.
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Figure 4.7: Various continuous aggregation query algorithms over five dimensions. Algorithms in dashed
boxes are not evaluated via simulation because they are not implemented in PIER .
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PSR is only sent once. The hierarchical method outperforms sending the PSRs directly to the root because so

many messages are routed to the root that the root’s in-boundnetwork becomes congested. When a node is

congested the DHT may incur timeouts and believes messages were lost, and will retry sending the message

using additional bandwidth.

With respect to latency, the hierarchical method outperforms all other methods when the network

size is very large, including the IP-based method with optimal timing as shown in Figure 4.11. This can

be easily explained by considering the amount of the data theroot and other other nodes are receiving. In

Figure 4.12 we see that the distribution of network load is highly skewed as before. With the exception of

hierarchical aggregation the root can become heavily congested which causes the high latency.

While hierarchical aggregation using the DHT was the best atdistributing load, as previously shown

in Figure 4.12 there are still over a dozen nodes receiving the bulk of the network traffic. In the last set of

experiments we explore the value of further optimizing the DHT’s aggregation tree by limiting a node’s

in-degree.

In Figure 4.13 we see that IP-1L-Optimal still performs the best with respect to the total network

communication. The Tree-Hi-Topology actually uses more bandwidth than the DHT-Hi-Learned because of

the extra messages sent from parents to the children. However, we can reduce the number of these extra

messages using the Tree-Hi-S-Topology method which prevents the tree from changing between epochs

unless a failure is detected. This method, even with some extra messages, uses less network communication

than the standard hierarchical method (DHT-Hi-Learned) because there are no longer any nodes with in-

bound congestion and therefore fewer retries for messages.Figure 4.14 clearly shows that the tree routing

strategy results in an even distribution of the in-bandwidth to all nodes.
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While Tree-Hi-S-Topology is unable to match the optimal communication, the longer the query

runs with a stable set of participating nodes the smaller thegap between the two strategies will be. This is

because most of the extra communication is occurring in the first few epochs while the tree is being optimized.

By the fourth epoch the tree is stable and with the exception of the DHT message overheads is optimal.

Figure 4.15 reinforces the desire to reduce in-bound congestion. The latency for Tree-Hi-S-Topology

is the lowest when the network size is largest. The other hierarchical strategies have slightly higher latencies.

The latency curves for three DHT and tree based strategies are not monotonically increasing as the number

of nodes in the system increases because of the randomness inthe tree structure based on the DHT routing.

Latency is based on the slowest route used from any leaf node to the root node.

Overall the Tree-Hi-S-Topology strategy offers the best set of attributes. The combination of five

design choices, multi-level, in-network aggregation, DHTrouting with in-degree optimization, learned timing

and preventing topology changes except in failures all worktogether to produce a solution with low-latency,

moderate overall network communication, and even distribution of network load.

4.3 Joins

Our join algorithms are adaptations of textbook parallel and distributed schemes, which leverage

DHTs whenever possible. This is done both for the software elegance afforded by reuse, and because DHTs

provide the underlying Internet-level scalability and robustness we desire. We use DHTs in both of the senses

used in the literature – as “content-addressable networks”for routing tuples by value, and as hash tables for

storing tuples. In database terms, DHTs can serve as “exchange” mechanisms [26], as hash indexes, and



48

 0

 10

 20

 30

 40

 50

 60

 70

 8160  8165  8170  8175  8180  8185  8190  8195

In
bo

un
d 

N
et

w
or

k 
C

om
m

un
ic

at
io

n 
(M

B
)

Node (Sorted by traffic)

1P-1L-Optimal
DHT-Hi-Learned

Tree-Hi-Topology
Tree-Hi-S-Topology

Figure 4.14: In-bound network communication for the dynamics dimension of continuous aggregation algo-
rithms for a single experiment with 8192 nodes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  10  100  1000  10000

La
te

nc
y 

(s
ec

on
ds

)

Number of Nodes

1P-1L-Optimal
DHT-Hi-Learned

Tree-Hi-Topology
Tree-Hi-S-Topology

Figure 4.15: Latency for the dynamics dimension of continuous aggregation algorithms with varying number
of nodes.



49

as the hash tables that underlie many parallel join algorithms. DHTs provide these features in the face of a

volatile set of participating nodes, a critical feature notavailable in earlier database work. We also use DHTs

to route messages other than tuples, including Bloom filters.

We have implemented two different binary equi-join algorithms, and two bandwidth-reducing

rewrite schemes. We discuss these with respect to relationsR andS and the following generic query:

SELECT R.pkey, S.pkey, R.pad
FROM R, S
WHERE R.joinattr = S.joinattr AND

R.num1 > constant1 AND
S.num1 > constant2 AND
f(R.num2, S.num2) > constant3;

We assume that the tuples forR andS are horizontally partitioned across the network. Unless

specifically stated, we do not make any assumptions as to how the source data is placed throughout the

network or which access handle is used to retrieve the sourcedata.

4.3.1 Core Join Algorithms

Our most general-purpose equi-join algorithm is a DHT-based version of the pipeliningsymmetric

hash join[82], interleaving building and probing of hash tables on each input relation. To begin the join

PIER will first retrieve each relation,R andS, at each node from the local data source. Each tuple that

satisfies all the local selection predicates is copied (withonly the relevant columns remaining) and is added

to a new unique DHT namespace,NQ, using the DHTput command. The values for the join attributes are

concatenated to form the resourceID for the copy. The tuplesare also tagged with their source table name

since their DHT name does not include the table name (the samenamespace is used for all tuples from both

input relations).

By the end of the join, tuples from bothR andS will have been hashed on the join attribute. Tuples

from both input relations (R andS) that have the same values for the join attributes will be assigned the same

location identifier. This ensures that the tuples will be routed to the same node during theput operation.

Probing of hash tables is a local operation that occurs at thenodes in parallel with building the hash

table. Each node registers with the DHT to receive anewData callback whenever new data is inserted into

the localNQ partition. When a tuple arrives, a DHTget toNQ is issued to find matches in the other table; this

get is expected to stay local. (If the local DHT key space has beenremapped in the interim, theget will return

the correct matches at the expense of additional network communication.). Matches are concatenated to the

probe tuple to generate output tuples, which are sent to the next stage in the query (another DHT namespace)

or, if they are output tuples, to the initiating site of the query.

The second join algorithm,Fetch Matches, is a variant of a traditional distributed join algorithm

that works when one of the tables, sayS, is already hashed on the join attributes. In this case, table R is

locally retrieved, and for eachR tuple aget is issued for the correspondingS tuple. Note that local selections

onS do not improve performance – they do not avoidgets for each tuple ofR, and since thesegets are done
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at the DHT layer, PIER’s query processor does not have the opportunity to filter theS tuples at the remote

site (recall Figure 3.1). In short, selections on non-DHT attributes cannot be pushed into the DHT. This is

a potential avenue for future streamlining, but such improvements would come at the expense of “dirtying”

DHT APIs with PIER-specific features – a design approach we avoided in our implementation. Once theS

tuples arrive at the correspondingR tuple’s site, predicates are applied, the concatenation isperformed, and

results are passed along as above.

4.3.2 Join Rewriting

Symmetric hash join requires hashing both tables, and hencecan consume a great deal of band-

width. To alleviate this when possible, we also implementedDHT-based versions of two traditional dis-

tributed query rewrite strategies, to lower the bandwidth of the symmetric hash join by avoid communicating

tuples that will not join with any tuples from the other relation. Our first is asymmetric semi-join. In this

scheme, we minimize initial communication by locally projecting bothR andS to their location identifier and

join keys, and performing a symmetric hash join on the two projections. The resulting tuples are pipelined

into Fetch Matches joins on each of the tables’ location identifiers. (In our implementation, we actually issue

the two joins’ fetches in parallel since we know both fetcheswill succeed.) Essentially this method creates

two indices on the fly, one for each relation.

The other rewrite strategy uses Bloom joins. First, Bloom filters are created by each node for each

of its local R andS fragments, and are published into a small temporary DHT namespace for each table.

At the sites in the Bloom namespaces, the filters are OR-ed together and then broadcast to all nodes storing

the opposite table. Following the receipt of a Bloom filter, anode begins retrieving its corresponding table

fragment, but rehashing only those tuples that match the Bloom filter. Since Bloom filters only generate false

positives (a tuple matches the filter but will not find any tuples to join with) and no false negatives, any errors

introduced by using the Bloom filters results in less bandwidth savings, but does not effect correctness.

4.3.3 Evaluation of Join Strategies

For these experiments we follow the same simulation setup asdescribed in Section 4.1. Tables

R and S are synthetically generated. Unless otherwise specified, each tuple inR is padded to be 1024

bytes, each tuple inS is 1536 bytes and each result tuple is 2048 bytes. The constants in the predicates

(R.num1 > constant1 andS.num1 > constant2) are chosen to produce a selectivity of 50%. In addition,

the last predicate uses a functionf(R.num2, S.num2); since it references bothR andS, any query plan must

evaluate it after the equi-join. We choose a function as opposed to simply directly comparing the attribute

from each of the two relations (i.e.R.num2 > S.num2) because it allows us to generate one set of relations

for multiple tests and vary the selectivity by setting the constant in the query. We choose the distribution of

the join columns such that 90% ofR tuples have two matching join tuples inS (before any predicates are

evaluated) and the remaining 10% have no matching tuples inS. These values where arbitrarily chosen so

that most tuples are used in computing the join result. However, by having some tuples not used in the join,
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the experiments will expose some differences in how the joinstrategies decide what data to move around in

the network. For each node in the network 100R and 100S tuples are injected into the system prior to the

query running.

As with aggregation we focus on two key metrics: network communication and latency. However,

unlike aggregation, we measure latency when the 100th result tuple is received instead of the last tuple. The

value 100 was chosen to be a little after the first tuple received, and well before the last. We avoid using

the first response as a metric here, on the chance that it is generated locally and does not reflect network

limitations. We are not interested in the time to receive thelast result, because as we increase the network

size and data set, we increase the number of results; at some point in that exercise we end up simply measuring

the (constant) network capacity at the query site, where allresults must arrive.

Centralized vs. Distributed Joins

In standard database practice, centralized data warehouses are often preferred over traditional dis-

tributed databases. In this section we make a performance case for distributed query processing at the scales

of interest to us. Consider a join query where tablesR andS are distributed amongn nodes, while the join is

only executed atm “computation” nodes, where1 ≤ m ≤ n.

If there aret bytesin toto that passed the selection predicates onR andS, then each of the com-

putation nodes would need to receivet
m
− t

n×m
data on average. The second term accounts for the small

portion of data that is likely to remain local. In our case theselectivity of the predicates on bothR andS is

50%, which results in a value oft of approximately 1 GB for a database of 2 GB.

When there is only one computation node in a 2048-node network, one would need to provision for

a very high link capacity in order to obtain good response times. For instance, even if we are willing to wait

one minute for the results, one needs to reserve at least 137Mbps for the downlink bandwidth, which would

be very expensive in practice.

IP vs. DHTs

The traditional implementations of distributed symmetrichash joins utilize an Exchange-like [26]

operator. These operators hash and route tuples with knowledge and IP addresses of every participating

node. While this is not practical in Internet-scale systemsit is interesting to compare the performance of a

DHT-based solution to an idealized IP-based solution.

In Figure 4.16 we show the network overhead of the DHT-based solution vs. an IP-based routing

solution. In Figure 4.17 we plot the latency of the two options. Not surprisingly the IP method uses less

network bandwidth and is faster. When the size of the networkexceeds eight nodes the latency till the 100th

result tuple begins to decrease for both methods. This is caused by the increase in the number of result tuples

(recall that the number of source tuples in the system is proportional to the number of the nodes in the system)

and therefore the 100th result is produced sooner. The additional bandwidth used by the lookup messages

in the DHT’s put method accounts for the addition communication and latencyas each tuple is only sent
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Figure 4.16: Overall bandwidth usage for a symmetric hash join with varying number of nodes.

across the network once in both scenarios. However, while the DHT has an impact on latency and network

communication, using the DHT allows us to issue a query without a priori knowledge of every node in the

system and their IP addresses.

Join Strategies

We now evaluate the four join strategies when the selectivity of the predicate on theS relation is

varied. In Figure 4.18 the overall in-bound network communication is shown. As expected, the symmetric

hash join uses the most network resources for many workloadssince both tables are rehashed. The increase

in the total in-bound traffic is due to the fact that both the number of tuples ofS that are rehashed and the

number of results increase with the selectivity of the selection onS. In contrast, the Fetch Matches strategy

basically uses a constant amount of network resources because the selection onS cannot be pushed down

in the query plan (the increase shown is due to sending the results generated by the query). This means that

regardless of how selective the predicate is, theS tuples must still be retrieved and then evaluated against the

predicate at the computation node. In the symmetric semi-join rewrite, the second join transfers only those

tuples ofS andR that match. As a result, the total in-bound traffic increaseslinearly with the selectivity of

the predicate onS. Finally, in the Bloom filter case, as long as the selection onS has low selectivity, the

Bloom filters are able to significantly reduce the rehashing on R, as manyR tuples will not have anS tuple to

join with. However, as the selectivity of the selection onS increase, the Bloom filters are no longer effective

in eliminating the rehashing ofR tuples, and the the algorithm starts to perform similar to the symmetric hash

join algorithm.

In Figure 4.19 the latency till the 100th tuple is plotted. The latency is mostly constant across all

the workloads shown. The latency is determined by the stagesof the join. Each strategy requires distributing
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Figure 4.17: Latency till the 100th result for a symmetric hash join with varying number of nodes.

the query to the participating nodes and the delivery of the results (direct IP communication between nodes).

In the symmetric hash join, the DHT must route a lookup message, wait for a lookup response to determine

the destination of each tuple, and then send the tuple directly to that node. Fetch Matches is slightly faster

since the response to the lookup message includes the tuple and does not require another message (recall

Section 3.2.4. The symmetric semi-join rewrite is essentially a symmetric hash join followed by a Fetch

Matches join so its latency is almost the sum of the two strategies minus the common overhead of query

dissemination and result collection. Finally the Bloom filter rewrite has the highest latency since the creation

and dissemination of the Bloom filters must occur before the tuples are rehashed.

4.3.4 Hierarchical Joins

Like hierarchical aggregation, the goal of hierarchical joins is to reduce the communication load.

In this case, we attempt to reduce theout-bandwidthof some nodes rather than the in-bandwidth as was the

case with hierarchical aggregation. When performing a jointhe size of the output relation is not necessarily

negligible. In fact it is possible that the size of the outputrelation is significantly larger than the input

relations. The output of a join can be the cross product of theinput relations, or have a maximum of|R|× |S|

tuples. In this case, nodes have the burden of both receivinginput tuples and sending output tuples over the

network. In this section we attempt to distribute the outputload among as many participating nodes.

In the partitioning (“rehash”) portion of a parallel hash join, source tuples can be routed through

the network (using the DHTsend), destined for the correct hash bucket on some node. As each tuple is

forwarded along the path, each intermediate node intercepts it using the DHT upcall callbacks, caches a copy,

and annotates it with its local node identifier before forwarding it along. When two tuples cached at the



54

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  20  40  60  80  100

T
ot

al
 N

et
w

or
k 

C
om

m
un

ic
at

io
n 

(M
B

)

Selectivity of Table S (%)

Sym. Hash Join
Fetch Matches Join

Sym. Semi-Join
Bloom Join

Figure 4.18: Overall bandwidth usage for four join strategies with varying selectivity on table S.
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Figure 4.20: Latency till the 100th result for a symmetric hash join with varying number of nodes.

same node can be joined, and were not previously annotated with a matching node identifier, the join result is

produced and sent directly to the proxy. In essence, join results are produced “early”, before matching tuples

have reached the node responsible for their respective hash-bucket. This could potentially improve latency

and shift the out-bandwidth load from the node responsible for a hash-bucket to nodes along the paths to that

node.

With respect to out-bandwidth load, the worst case scenariois caused by a skewed workload that

only has one hash bucket which is therefore assigned to a single node. The network bottleneck at that node

could be ameliorated by offloading out-bandwidth to nodes “along the way”. The in-bandwidth at a node

responsible for a particular hash bucket will remain the same since it receives every join input tuple that it

would have without hierarchical processing. Unfortunately our results show this is not feasible.

In our experiments we show four different methods, the basicsymmetric hash join, the hierarchical

symmetric hash join, and both methods when all tuples are assigned to the same hash-bucket to simulate the

worst-case workload. Figure 4.20 shows the the hierarchical methods reduce the latency to under one second.

However, as shown in Figure 4.21, the decrease in latency comes at a significant increase in overall network

communication.

Hierarchical joins require sending the entire tuple to eachnode on the path to the hash bucket. In

the standard join the DHT only routes a small message along the path to discover the destination node and

then sends the payload directly to the node. The difference in the size of the lookup message (about 124

bytes) and the entire tuple (between 1100 and 1620 bytes) cause the significant increase in network traffic.
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Chapter 5

Multi-Query Optimization

In the previous chapter we described various methods for executing a single aggregation query. We

showed that learning and optimizing the communication treeover time improves latency, decreases overall

network communication, and more equally distributes in-bound network communication. However, an im-

portant challenge in modern distributed querying is to efficiently process multiple continuous aggregation

queries simultaneously. Processing each query independently may be infeasible due to network bandwidth

constraints. We now focus on further decreasing overall network communication through multi-query opti-

mizations which will utilize the single aggregation query execution methods previously discussed.

In this chapter, we consider this problem in the context of distributed aggregation queries that vary

in their selection predicates. We identify scenarios in which a large set ofq such queries can be answered

by executingk ≪ q differentqueries. Thek queries are revealed by analyzing a boolean matrix capturing

the connection between data and the queries that they satisfy, in a manner akin to familiar techniques like

Gaussian elimination. Indeed, we identify a class oflinear aggregate functions (including SUM, COUNT

and AVERAGE), and show that the sharing potential for such queries can be optimally recovered using stan-

dard matrix decompositions from computational linear algebra. For some other typical aggregation functions

(including MIN and MAX) we find that optimal sharing maps to the NP-hardset basisproblem. However,

for those scenarios, we present a family of heuristic algorithms and demonstrate that they perform well for

moderately-sized matrices. We also present a dynamic distributed system architecture to exploit sharing op-

portunities, and experimentally evaluate the benefits of our techniques via a novel, flexible random workload

generator we develop for this setting.

5.1 Overview

The goal of the algorithms we present in this chapter is to minimize overall network communi-

cation. During an aggregation query, each node must send a partial state record (PSR) to its parent in an

aggregation tree. If there is no sharing, then we are communicating one partial state record (PSR) per node
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per query per epoch. If we haveq queries, our goal is to only sendk PSRs per node per epoch, wherek ≪ q,

such that thek PSRs are sufficient to compute the answer to allq queries. The next section discusses the

intuition for how to select thesek PSRs.

5.1.1 The Intuition

Consider a very simple example distributed monitoring example system withn nodes. Each of the

nodes examines its local stream of packets. Each packet is annotated with three boolean values: (1) whether

there is a reverse DNS entry for the source, (2) if the source is on a spam blacklist, and (3) if the packet is

marked suspicious by an intrusion detection system (IDS). One could imagine various applications monitor-

ing all n streams at once by issuing a continuous query to count the number of global “bad” packets, where

each person determines “bad” as some predicate over the three flags. Here are example query predicates from

five COUNT queries over the stream of packets from all the nodes:

1. WHERE noDNS = TRUE

2. WHERE suspicious = TRUE

3. WHERE noDNS = TRUE OR suspicious = TRUE

4. WHERE onSpamBlackList = TRUE

5. WHERE onSpamBlackList = TRUE AND suspicious = TRUE

We use an idea from Krishnamurthy, et al. [44] to get an insight for how to execute these queries

using fewer than 5 PSRs. In their work, they look at the set of queries that each tuple in the stream satisfies,

and use this classification to partition the tuple-space to minimize the number of aggregation operations

(thereby reducing computation time). Returning to our five example queries above, suppose in a single epoch

at nodei we have tuples that can be partitioned into exactly one of thefollowing five categories:

1. Tuples that satisfy queries 1 and 3 only

2. Tuples that satisfy queries 2 and 3 only

3. Tuples that satisfy query 4 only

4. Tuples that satisfy queries 1, 3, and 4 only

5. Tuples that satisfy queries 2, 3, 4 and 5 only

We will refer to each of these categories as afragment. As a compact notation, we can represent

this as a (f × q) booleanfragment matrix, F , with each column representing a query (numbered from left to
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right) and each row representing a fragment:

Query 1↓ ... ↓ Query 5

F =



















1 0 1 0 0

0 1 1 0 0

0 0 0 1 0

1 0 1 1 0

0 1 1 1 1



















← Fragment 1

...

← Fragment 5

Now, suppose in a given epoch some nodei receives a number of tuples corresponding to each

fragment; e.g., it receives 23 tuples satisfying queries 1 and 3 only (row 1), 43 satisfying queries 2 and 3 only

(row 2), etc. We can also represent this as a matrix calledAi:

AT

i =
[

23 43 18 109 13
]

Given the two matrices, we can now compute the local count forthe first query (the first column of

F ) by summing the first and fourth entries inAi, the second query by summing the second and fifth entries

in Ai. In algebraic formAT

i × F will produce a one-row matrix with each column representingthe count for

the respective query. Encoding the information as matrixAi is not more compact than sending the traditional

set of five PSRs (one for each query). However, if we can find a reduced matrixA′

i – one with empty entries

that do not need to be communicated – such thatA′T

i × F = AT

i × F , we can save communication at the

expense of more computation.

This is indeed possible in our example. First, note that fragment 4 is the OR of thenon-overlapping

fragments 1 and 3 (i.e. their conjunction equals zero). Now,observe the significance of that fact with

respect to computing our COUNT queries: when summing up the counts for those queries that correspond

to fragment 1 (queries 1 and 3), we can ignore the count of fragment 3 since its entries for those queries are

zero. Similarly, when summing up the counts for queries overlapping fragment 3 (query 4), we can ignore

the count of fragment 1. Because of this property, we can add the count associated with fragment 4 intoboth

of the counts for fragments 1 and 3 without double-counting in the final answer, as follows:

A′T =
[

23+109=132 43 18+109=127 109→∅ 13
]

Using this newA′

i, A′T

i × F will still produce the correct answer for each query, even thoughA′ has more

empty entries. And sinceA′

i has an empty entry, there is a corresponding savings in-network bandwidth,

sending only four PSRs instead of five. In essence, we only need to execute four queries instead of the

original five. The key observation is that the size ofA′

i is equal to the number ofindependent rowsin F , or

therank of F ; the exact definition of independence depends on the aggregation function as we discuss next.

In all cases the rank ofF will always be less than or equal tomin(f, q). Therefore we will never need more

thanq PSRs, which is no worse than the no-sharing scenario.
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5.1.2 Taxonomy Of Aggregates

The optimization presented in the previous section (based on ORing non-overlapping fragments)

works for all distributive and algebraic aggregate functions (see Section 4.2 for types of aggregation func-

tions). However, some distributive and algebraic aggregate functions have special properties that allow more

powerful solutions to be used that exploit additional sharing opportunities. We categorize these aggregates

into three broad categories:linear, duplicate insensitive, andgeneral. These three categories map to differ-

ent variations of the problem and require separate solutions. We first discuss the taxonomy and then briefly

introduce our solutions.

Formally, we use the termlinear for aggregate functions whose fragment matrix entries forma field

(in the algebraic sense) under two operations, one used for combining rows, the other for scaling rows by con-

stants. An important necessary property of a field is that there beinversesfor all values under both operators.

Among the familiar SQL aggregates, note that there is no natural inverse for MIN and MAX under the nat-

ural combination operator: given thatz = MAX (x, y), there is no uniquey−1 such that MAX(z, y−1) = x.

Hence these are not linear. Another category we consider areduplicate insensitiveaggregates, which produce

the same result regardless of the number of occurrences of a specific datum. The table below lists a few

example aggregate functions for each category:

Non-linear Linear
Duplicate Sensitive k-MAX, k-MIN SUM, COUNT, AVERAGE
Duplicate Insensitive MIN, MAX, BLOOM FILTER,

logical AND/OR
Spectral Bloom filters [15], Set
expressions with updates [23]

The intuition for why k-MAX and k-MIN (the multi-set of the top k highest/lowest datums) are

non-linear is analogous to that of MAX and MIN. k-MAX/MIN arealso duplicate sensitive since evaluating

each additional copy of the same highest datum would expel the kth highest datum due to the multi-set

semantics.

Spectral Bloom filters are an extension of Bloom filters that keep a frequency associated with each

bit. The frequency is incremented when a datum maps to that bit, and can be decremented when a datum is

removed from the filter. This is linear because the frequencies can be added/subtracted to each other and can

be scaled by a real number. In addition the output of the filteris based on whether the frequency is greater

than zero or not, so counting the same datum twice may producean inflated frequency value but does not

change the output.

In Section 5.4 we address linear aggregates where this problem can be reduced directly to rank-

revealing linear algebra factorization of matrixF , and polynomial-time techniques from the literature directly

lead us to an efficient solution. For duplicate insensitive aggregates, we explain in Section 5.5 that the problem

is a known NP-Hard problem and has higher computational complexity; in these cases we develop a family

of heuristics that we evaluate experimentally. Finally foraggregates that are neither linear nor duplicate

insensitive, the most conservative optimization algorithm must be used. We stress that for both linear and
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Figure 5.1: Tuples are first aggregated by fragment (1) into alocalAi PSR.F andAi are then decomposed
(2) to formA′

i. Each entry inA′

i is then aggregated over all nodes (3) in separate aggregate trees. The final
global value for each entry inA′ sent to some nodej. Nodej can then reconstruct (4) the answers to every
query and distribute the result.

duplicate insensitive aggregates, our solutions will never require more global aggregate computations than

the no-sharing scenario.

We now discuss the architecture and the general solution to this problem.

5.2 Architecture

The general technique for performing our multi-query optimization has four phases. First at each

node,i, we need to create the initialF andAi matrices in thefragmentationphase. Second, we candecom-

poseF andAi into a smallerA′

i. Third, we perform theglobal aggregationof all localA′

i’s across all nodes.

Finally, we canreconstructthe final answers to each query at some nodej. This process is illustrated in

Figure 5.1 and described in detail below.

In the first phase, fragmentation, we are using the same technique presented in [44]. Each tuple is

locally evaluated against each query’s predicates to determine on-the-fly which fragment the tuple belongs

to. We can use techniques such as group filters [55] to efficiently evaluate the predicates. Once the fragment

is determined, the tuple is added to the fragment’s corresponding local PSR inAi.

In the second phase, decomposition, each node will locally apply the decomposition algorithm to

F andAi to produce a smaller matrix,A′

i. The specific decomposition algorithm used is dependent on the

type of aggregate function being computed. In Section 5.3 wepresent the basic algorithm that applies to all

functions. Section 5.4 shows an algorithm that can be used for linear aggregate functions, and, in Section 5.5

we show a family of heuristic algorithms that work for duplicate insensitive functions.

We require that every node in the system use the sameF matrix for decomposition. TheF matrices

must be the same so that every entry inA′

i has the same meaning, or in other words, contains a piece of the

answer to same set of queries. Nodes that do not have any tuples for a particular fragment will have an empty

PSR inAi. In Section 5.6.1, we explain how to synchronizeF on all nodes as data is changing locally; for
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duplicate insensitive aggregate functions, we are able toeliminate this requirement altogether.

In the third phase, global aggregation, we aggregate each oftheA′

i’s over all nodes in the system

to produce the globalA′. Since we want to maintain the load balanced property of the non-sharing case,

we aggregate each entry/fragment inA′ separately in its own aggregation tree. Once the final value has

been computed for an entry ofA′ at the root of its respective aggregation tree, the PSR is sent to a single

coordinator node for reconstruction.

The fourth phase, reconstruction, begins once the coordinator node has received each of the globally

computedA′ entries. Using theF matrix (or its decomposition) the answer to all queries can be computed.

The reconstruction algorithm is related to the specific deconstruction algorithm used, and is also described in

the respective sections.

We take a moment to highlight the basic costs and benefits of this method. Both the sharing and

no-sharing methods must disseminate every query to all nodes. This cost is same for both methods and is

amortized over the life of the continuous query. Our method introduces the cost of having all nodes agree

on the same binaryF matrix, the cost to collect all of theA′ entries on a single node, and, finally the cost

to disseminate the answer to each node that issued the query.The benefit is derived from executing fewer

global aggregations (in the third phase). The degree of benefit is dependent on the data/query workload. In

Section 5.7 we analytically show for which range of scenarios this method is beneficial.

5.3 Basic Decomposition Solution

Our first algorithm, basic decomposition, applies to all aggregation functions, and directly follows

the intuition behind the optimization we presented in the previous section. Our aim is to find the smallest set

of basis rows, such that each row is exactly the disjunction of two or more basis rows that are non-overlapping

– i.e., their conjunction is empty. If the basis rows were to overlap, then a tuple would be aggregated multiple

times for the same query.

Formally, we want to find the basis rows inF under a limited algebra. Standard boolean logic does

not allow us to express the requirement that basis rows be non-overlapping. Instead, we can define an algebra

using a 3-valued logic (with values of 0, 1, andI for “invalid”) and a single binary operator called ONCE.

The output of ONCE is 1 if and only if exactly one input is 1. If both inputs are 0, the output of ONCE is 0,

and if both inputs are 1 the output isI. Using this algebra, the minimal set of rows which can be ONCEed

to form every row inF is the minimal basis set, and our target solution. TheI value is used to prevent any

tuple from being counted more than once for the same query.

The exhaustive search solution is prohibitively expensive, since if each row isq bits there are22
q

possible solutions. While this search space can be aggressively pruned, it is still too large. Even a greedy

heuristic is very expensive computationally, since there is a total of2q choices (the number of possible rows)

at each step – simply enumerating this list to find the locallyoptimal choice is clearly impractical.

To approach this problem, we introduce a simple heuristic that attempts to find basis rows using the
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existing rows inF . Given two rows,i andj, if j is a subset ofi thenj is covering those bits ini that they

have in common. We can therefore decomposei to remove those bits that are in common. When we do that,

we need to alterA by adding the PSR fromi’s entry toj’s entry.

We can define a DECOMPOSEoperation as:

DECOMPOSE(F, Ai, i, j):

if (i 6= j) AND (¬F [i]&F [j] = 0) then \\ ONCE(F [i], F [j])

F [i] = F [i] XOR F [j]

Ai[j] = A[j] + A[i]

else return invalid

A simple algorithm can iteratively apply DECOMPOSEuntil no more valid operations can be found.

This decomposition algorithm, will transformF andAi into F ′ andA′

i:

BASIC DECOMPOSITION(F, Ai):

boolean progress = true

while progress = true

progress = false

for all rowsi ∈ F

for all rowsj ∈ F

if Decompose(F, Ai, i, j) 6= invalid

then progress = true

for all rowsk ∈ Ai

if |F [k]| = 0 then

Ai[k] = ∅ \\ rows inF with all 0’s

Reconstruction is straightforward sinceA′T

i × F ′ = AT

i × F .

The running time of the basic decomposition algorithm isO(f3), wheref is the number of rows

in F . Since the basic decomposition is searching a small portionof the search space, it is not expected to

produce the smallest basis set. Furthermore, it is the only algorithm we present that can produce an answer

worse than no-sharing. The algorithm starts withf basis rows, wheref can be greater thanq, and attempts to

reduce the size of this initial basis. This reduction may notalways be sufficient to find a basis that is smaller

than or equal toq (although one such basis must exist). In these cases we revert to a q × q identity matrix

which is equivalent to a no-sharing solution. However, thissimple algorithm does provide a foundation for

our other solutions.

5.4 Linear Aggregate Functions

If the aggregate function is linear, such as COUNT, SUM, or AVERAGE, we are no longer con-

strained to using the limited algebra from the previous section. Instead, we can treat the matrix entries as real
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numbers and use linear algebra techniques akin to Gaussian Elimination, adding and subtracting rows inF

from each other, and multiplying these rows by scalars. Our goal of reducing the size ofAi can therefore

be accomplished by finding the minimal set of linearly independent rowsF ′ in F , or the rank ofF . By

definitionF can be reconstructed fromF ′, so we can createA′

i from Ai at the same time and still correctly

answer every query during the reconstruction phase.

For example, suppose we are calculating the COUNT for these five queries with thisF andAi

matrix:

F =



















1 1 0 1 1

1 0 1 1 0

0 1 1 1 0

1 1 0 0 0

1 1 1 1 0



















Ai =



















13

54

24

78

32



















The answer to the first query (in the leftmost column) is13 + 54 + 78 + 32 or 177. The complete solution

matrix can be computed usingAT

i × F .

It turns out that we can expressF andAi using only four rows:

F ′ =















1 1 1 1 0

0 1 1 1 0

0 0 −1 −1 0

0 0 0 1 1















A′

i =















177

−30

37

13















UsingF ′ andA′

i we can still produce the correct solution matrix, usingA′T

i × F ′. In this example

we used Gaussian Elimination onF to find the smallest set of basis rows. We will now discuss how to solve

this problem using more efficient algorithms.

In numerical computing,rank-revealing factorizationsare used to the find the minimal set of basis

rows. We will apply three well-studied factorizations to our problem: the LU, QR, and SVD decompositions.

These algorithms will decomposeF into two or more matrices that can be used in local decomposition to

transformAi into A′

i and then to reconstructA′ into the query answers at the coordinator node. These

factorization methods and their implementations are well studied in the numerical computing literature [6].

We now present formulations for utilizing these factoring methods.

An LU algorithm factorsF into a lower triangular matrixL and an upper triangular matrixU such

thatL × U = F . In the decomposition phase we can formA′

i usingAT

i × L and remove any entries inA′

i

whose corresponding row inU is composed of all zeros. Reconstruction at the coordinatoris simplyA′×U .

We can safely remove the entries inA′

i whose corresponding row inL is all zeros because in reconstruction

those entries will always be multiplied be zero and thus do not contribute to any results. During reconstruction

we insert null entries inA′ as placeholders to insure the size ofA′ is correct for the matrix multiplication.

Using QR factoring is very similar to using LU. In this case, the QR algorithm factorsF into a

general matrixQ and an upper triangular matrixR such thatQ × R = F . We formA′

i usingAT

i × Q
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and remove any entries inA′

i whose corresponding row inR is composed of all zeros. Reconstruction is

accomplished usingA′ ×R.

SVD factorsF into three matrices,U , S, andV T. A′

i is formed in decomposition usingAT

i ×U×S.

Using this method, we remove entries fromA′

i whose corresponding row inS is zero. Reconstruction is

accomplished by computing the product ofA′ andV T. With all three algorithms, the factorization ofF

is deterministic and therefore the same on all nodes, allowing us to aggregateA′

is from all nodes before

performing reconstruction.

These algorithms all have a running time ofO(m×n2) wherem is the size of the smaller dimension

of F andn is the larger dimension [6]. In addition, all three methods would be optimal (finding the smallest

basis set and thus reducingF andAi to the smallest possible sizes) using infinite precision floating point

math. However, in practice these are computed on finite-precision computers which commonly use 64 bits to

represent a floating point number. Factorization requires performing many floating point multiplications and

divisions which may create rounding errors that are furtherexacerbated through additional operations. While

LU factorization is especially prone to the finite precisionproblem, QR factoring is less so, and SVD is the

least likely to produce sub-optimal reductions inA′’s size. Due to this practical limitation, the factorization

may not reach the optimal size. In no case will any of these algorithms produce an answer that requires more

global aggregations than the no-sharing scenario. In addition, these rounding error may introduce errors inA′

and therefore perturb the query results. However, these algorithms, in particular SVD, are considered robust

and used in many applications.

5.5 Duplicate Insensitive Aggregate Functions

The previous algorithms preserve the invariant that each tuple that satisfies a particular query will

be aggregated exactly once for that query. However, some aggregate functions, such as MIN and MAX,

will still produce the same answer even if a tuple is aggregated more than once. We can take advantage of

this property when decomposingF and achieve a higher communication savings compared to the previous

algorithms. Consider this simple example:

F =



















1 1 0 1 1

1 0 1 1 0

0 1 1 1 0

1 1 0 0 0

1 1 1 1 0



















F ′ =















1 1 0 1 1

1 0 1 1 0

0 1 1 1 0

1 1 0 0 0















We notice that the fifth row ofF is equal to the OR of the second and third (or second and fourth,

or third and fourth). Thus we can define a matrixF ′ that removes this redundant row. The corresponding

operation to theA matrix is to aggregate the fifth entry with the second entry, aggregate the fifth entry with

the third entry, and then remove the fifth entry. Intuitively, this is moving the data from the fifth fragment to

both the second and third fragments.
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Similar to the previous sections, the goal is to find the minimum number ofindependent rows. But

in this case, the independent rows are selected such that allrows inF can be obtained by combining rows in

the basis using only the standard OR operation, rather than ONCE.

This problem is also known as theset basisor boolean basisproblem. The problem can be de-

scribed succinctly as follows. Given a collection of setsS = {S1, S2, ...Ss}, a basisB is defined as a

collection of sets such that for eachSi ∈ S there exists a subset ofB whose union equalsSi; the set basis

problem is to find the smallest such basis set. Our problem is the same, whereS = rows ofF andB = rows of

F ′. The set of possible basis sets is22
n

wheren is the number of elements in
⋃

S. This problem was proved

NP-Hard by Stockmeyer [73], and was later shown to be inapproximable to within any constant factor [52].

To our knowledge, ours is the first heuristic approximation algorithm for the general problem. In [51] Lubiw

shows that the problem can be solved for some limited classesof F matrices, but these do not apply in our

domain.

As with the general decomposition problem in Section 5.3, the search space of our set basis problem

is severely exponential inq. To avoid exhaustive enumeration, our approach for finding the minimal basis set,

F ′, is to start with the simplest basis set, aq × q identity matrix (which is equivalent to executing each query

independently), and apply transformations. The most intuitive transformation is to OR two existing rows in

F ′, i andj, to create a third rowk. Using this transformation (and the ability to remove rows from F ′ one

could exhaustively search for the minimal basis set. This approach is obviously not feasible.

We apply two constraints to the exhaustive method in order tomake our approach feasible. First,

after applying the OR transformation, at least one of the existing rows,i or j, is always immediately removed.

This ensures that the size of the basis set never increases. Second, we maintain the invariant that after each

transformation the set is still a valid basis ofF .

We can now formally define two operations, BLEND and COLLAPSEwhich satisfy these invariants.

Given a matrixF and a basisF ′ for F , both operations overwrite a rowF ′[i] with the OR of rowF ′[i] and

another rowF ′[j]. COLLAPSE then removes rowj from F ′, whereas BLEND leaves rowj intact. After per-

forming one of these operations, if the newF ′ still forms a basis forF then the operation is valid; otherwise

the originalF ′ is kept.

COLLAPSE is the operation that achieves a benefit, by reducing the sizeof the basis set by one.

COLLAPSE is exploiting the co-occurrence of a bit pattern inF . However, it may not be valid to apply

COLLAPSE until one or more BLEND operations are performed. The intuition for this is that when the bit

pattern in some input row can be used in multiple basis rows, BLEND preserves the original row so that

it can be used as, or part of, another basis row. Consider matrix F , and the followinginvalid COLLAPSE

transformation:

F =















0 1 1 1

1 0 0 1

1 1 1 1

0 1 0 1















F ′=















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















→









1 0 0 1

0 1 0 0

0 0 1 0









We cannot directly COLLAPSE rows one and four inF ′ as shown above. The resultingF ′ is no longer able to
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reconstruct the first or fourth rows inF via any combination of ORs; we call such a transformationinvalid.

However, if we first BLEND rows two and four (leaving row four), we can then COLLAPSE rows one and

four, as shown next:

F ′=















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















→















1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1















→









1 0 0 1

0 1 0 1

0 0 1 0









Using these two operations we can search a subset of the overall search space for the minimal basis

set. A simple search algorithm, called BASIC COMPOSITION, performs BLEND or COLLAPSE in random

order until no more operations can be executed. The pseudo-code is shown below:

BASIC COMPOSITION(F )

F ′ = qxq identity matrix

boolean progress = true

while progress = true

progress = false

for all rowsi ∈ F ′

for all rowsj ∈ F ′

if i 6= j then

if COLLAPSE (F, F ′, i, j) 6=invalid then

progress = true

break to while loop

if BLEND (F, F ′, i, j) 6=invalid then

progress = true

break to while loop

A′

i can be calculated by aggregating together each element inAi that corresponds to a row inF

which is equal to or a superset of theA′

i entry’s correspondingF ′ row.

There are three key limitations of this algorithm:

• Once an operation is performed it can not be undone: both operations are non-invertible and there is no

back-tracking. This limits the overall effectiveness of finding the minimal basis set since the algorithm

can get trapped in local minima.

• The random order in which operations are performed can determine the quality of the local minimum

found.

• At any given point there areO(f2) possible row combinations to choose from. Finding a valid COL-

LAPSE or BLEND is time consuming.
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In effect, the algorithm takes a single random walk through the limited search space. For some

workloads, the optimal solution may not even be attainable with this method. However, while this heuristic

algorithm gives no guarantees on how small the basis set willbe, it will never be worse than the no-sharing

solution. We will show in Section 5.8 that this heuristic is often able to find 50% of the achievable reductions

in the size of the basis set, but its running time is extremelylong.

5.5.1 Refinements

Our first refinement takes a slightly different approach. Instead of optimizing every query at once,

we incrementally add one query at time optimizing as we go. The two key observations are (1) that a valid

covering forq − 1 queries can coverq queries with the addition of a single row which only satisfiesthe new

query and (2) the optimal solution forq queries given an optimal basis solution forq − 1 queries and the

single basis row for theqth query will only have up to one valid COLLAPSE operation.

Using these observations we can define the ADD COMPOSITION algorithm which incrementally

optimizes queries one at a time:

ADD COMPOSITION(F , F ′, start)

Require: F ′ hasstart columns

let q = the number of queries\\ columns inF

let f = the number of rows\\ rows inF ′

for c = start + 1 up to q

ExpandF ′ to (f + 1)× c with 0’s

F ′[f + 1][c] = 1

Fc = Project(F ,c) \\ See Following Algorithm

Optimize(Fc,F ′,f + 1)

return F ′

PROJECT(S, columns)

for all rowsi ∈ S

for all colsj ∈ S

if j≤columns then

S′′[i][j]=S[i][j]

elseS′′[i][j]=0

S′ = unique rows inS′′

return S′

The OPTIMIZE step in ADD COMPOSITION is very similar to the repeat loop in BASIC COMPOSI-

TION. It has asearch loopthat continues looking for combinations of rows that can be used in a COLLAPSEor

BLEND operation until there are no such combinations. OPTIMIZE has two key improvements over the BA-

SIC COMPOSITION. First, COLLAPSEs and BLENDs are not considered if they combine two old (optimized)
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rows. Second, since only one row was added toF ′, once a COLLAPSE is performed the optimization is over

and the search loop is stopped, since no additional COLLAPSEs will be found. As shown in Section 5.8 this

method is considerably faster and still equally effective at finding a small basis set compared to the BASIC

COMPOSITIONalgorithm.

We consider three dimensions for search loop strategies:

• Number of operations per iteration:

– O: Perform only one operation per search loop and then restart the loop from beginning.

– M: Perform multiple operations per search loop only restarting after every combination of rows

are tried.

• Operation preference:

– A: Attempt COLLAPSE first, but if not valid attempt BLEND before continuing the search.

– R: Perform all COLLAPSEs while searching, but delay any BLENDs found till the end of the

search loop.

– S:First search and perform only COLLAPSEoperations, then search for and perform any BLENDs.

This requires two passes over all row pairs per loop.

• Operation timing:

– W: Execute operations immediately and consider the new row formed in the same loop.

– D: Execute operations immediately but delay considering the new row for additional operations

till the next loop.

– P: Enqueue operations till the end of the search loop and then execute all operations.

The BASIC COMPOSITION algorithm shown uses the O/R strategy. The algorithm performs one

operation per iteration of the outer loop. So after each operation, it will begin the search again from the be-

ginning. The algorithm favors COLLAPSE by attempting that operation first. The operator timing dimension

is not relevant for strategies that only perform one operation per iteration. Note that the BASIC COMPOSI-

TION can be modified to use any of the possible search strategies. In the evaluation section we only show the

strategy that performed the best in our experiments, M/A/W.

There are only twelve search strategies possible using the three dimensions evaluated (when per-

forming only one operation per search loop, operation timing is not relevant). All twelve are experimentally

evaluated in Section 5.8.

5.6 Practical Matters

In this section we discuss how we ensure that every node has the correctF matrix, whether through

explicit or implicit communication, and its associated network overhead. We then discuss how to extend our
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methods to work for a larger class of complex queries.

5.6.1 SynchronizingF Across the Network

In order to ensure the PSRs inA′ that are communicated from one node to another are correctly

decoded we must guarantee that every node has the sameF matrix. Otherwise, during the global aggregation

or reconstruction phases, the PSRs inA′ may be incorrectly aggregated causing the query results to be

wrong. This is very important for correctness of some decomposition algorithms such as the linear algebra

routines LU, QR, and SVD. For the other decomposition algorithms presented there is an optimization to the

architecture that eliminates this requirement. We first describe a simple method for ensuring all nodes have

the sameF and then describe the optimization.

At the end of every aggregation epoch (after the node has collected all the raw data necessary to

compute the aggregates for that epoch) each node,i, computes its localF matrix,Fi. Since each node may

have a different distribution of data, the matrixFi at nodei may differ from matrixFj at nodej 6= i. The

globalF is the set union of the rows in all localFi’s.

This can be computed like any other aggregate using a tree. All the leaves of the tree send their

completeFi to their parents. Their parents compute the union over all their children, and send the result to

their parent. At the root of this aggregation tree, the global F is computed. The globalF is then multicast to

every node on the reverse path of the aggregation tree.

For subsequent epochs only additions toF need to be transmitted up or down the aggregation

tree. Deletions can also be propagated up the aggregation tree, however any node along the path can stop

the propagation (which prevents a change to the globalF ) if it has at least one other child (or itself) still

needing that row. The addition or deletion of a query will also changeF . Query (column) deletions require

no communication (every node simply removes the column forF ). The addition of a query (column) affects

every row inF , but in a limited fashion. Each row is either extended with a 1, a 0, or both (which requires

duplicating the old row). This can be compactly transmittedas a modification bitmap with two bits per

existing row. The global modification bitmap is the OR of every node’s individual modification bitmap which

can also be efficiently computed as an aggregate.

Once all nodes have the globalF , the general computation of the query aggregates can begin.This

synchronization method has the negative effect of delayingall results for at least the duration of one global

aggregation plus one global multicast. In practice, the actual delay must be sufficiently long to accommodate

worst case delays in the network.

The exact communication cost of this method is dependent on the query/data workload. However,

given a constant set ofq queries and a set ofn nodes, we can show the worst case cost of synchronizingF

for each additional bitmap, and for how many epochs the system must remain unchanged to recoup the cost.

The worst case communication cost occurs if at least every leaf node in the aggregation tree requires

the addition of the same new row in a given aggregation epoch.In this situation every node will need to

transmit the new row inF up and down the aggregation tree which yields a cost of2× n× q bits per row. If
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only one node requires the new row the cost is roughlyn× q + log(n)× q as only one node is sending data

up the aggregation tree.

Assume the size of each PSR isp bits. The savings realized from sharing will never be less than the

eventual total gain,Gt. During each epoch,(1−Gt)× q aggregates are being computed instead ofq queries

in the no-sharing scenario, for a benefit of((q − (1 −Gt) × q)× p) × n or Gt × q × n × p bits per epoch.

We reach the break-even point after2×n×q
Gt×q×n×p

= 2

Gt×p
epochs. If multiple rows must be added at the same

time, the number of epochs till the break-even point increases proportionally.

The basic decomposition and the algorithms for duplicate insensitive aggregates do not require a

globalF and can avoid the associated costs. Instead, it is sufficientto annotate every entry inA′ with its

corresponding binary row inF ′. Since every aggregation tree is required to have an identifier (such as a

query identifier) to distinguish one tree from another, the basis row entry can be used as the identifier. This is

possible since the reconstruction phase does not any require additional information about the decomposition.

While this optimization does not apply to linear aggregatesthere are other techniques that could be

considered. For some query workloads a static analysis of the query predicates may be sufficient to compute a

superset ofF . This can be further extended to handle the actual data distribution by having nodes compactly

communicate which portions of the data space they have. We leave a complete analysis of this optimization

for future work.

5.6.2 Complex Queries

Our query workload to this point might seem limited: sets of continuous queries that are identical

except for their selection predicates. In this section we observe that our techniques can be applied to richer

mixes of continuous queries, as a complement to other multiquery optimization approaches.

For example, [46, 44] discuss optimizing sharing with queries that have different epoch parameters.

Their methods partition the stream into smaller epochs thatcan later be combined to answer each of the

queries. One can view the epoch-share optimization as queryrewriting, producing a set of queries with the

same epoch parameters, which are post-processed to properly answer each specific query. In that scenario,

our technique is applied to the rewritten queries. Similarly, queries with different grouping attributes can

also be optimized for sharing. In that case, the smallest groups being calculated would be treated as separate

partitions of the data that are then optimized separately byour techniques. After processing the results can

be rolled-up according to each queries specification.

Our approach does not depend on a uniform aggregation expression across queries. Queries that

include multiple aggregate functions, or the same functionover different attributes, or queries that require

different aggregate functions can be optimized as one in ourapproach – as long as the same decomposition

can be used for all the aggregate expressions. In these cases, the PSR contained inA orA′ is the concatenation

of each PSR needed to answer all aggregate functions. In those cases where different decompositions must

be used (e.g., one function is a MAX and another is a COUNT) then they can be separately optimized and

executed using our techniques.
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Our results show that there is a clear choice of which optimization technique to use for most classes

of aggregate functions. However, if a function is both linear and duplicate-insensitive, it is unclear which tech-

nique to apply. While few functions fall in this category (see Section 5.1.2), for those functions the selection

of algorithm will be dependent on the specific workload. Characterizing the tradeoffs among workloads for

these unusual functions remains an open problem.

5.7 Potential Gains

Before we evaluate the effectiveness of our techniques experimentally, we explore the analytical

question of identifying query/data workloads that should lead to significant beneficial sharing, and quanti-

fying that potential benefit. This will provide us a framework for evaluating how close our “optimization”

techniques come to a true optimum. In this section, we show that there are cases where sharing leads to

arbitrarily high gain, given a sufficient number of queries.We present two constructions, one designed for

duplicate insensitive query workloads, the other for duplicate sensitive workloads. Our goal is to construct a

workload that maximizes the sharing or benefit potential. Wedefine the total gain,Gt as:

Gt = 1− (# aggregates executed÷ # queries answered)

We also define the fragment gain which is the gain over computing each fragment,s as:

Gf = 1− (# aggregates executed÷ # fragments)

The total gain,Gt, is the most important metric, since an effective decomposition algorithm can

translate this sharing potential into a proportional amount of network bandwidth savings. The fragment gain,

Gf , is the benefit over computing every fragment inF .

5.7.1 Duplicate Insensitive

To maximize the sharing potential we start withb base queries(b1, b2, b3, ...bb) and data that satis-

fies every conjunctive combination of theb queries({b1}, {b2}, {b3}, ...{b1, b2},

{b1, b3}, ...{b1, b2, b3, ...bb}) such that we have2b− 1 fragments (the−1 is for data that satisfies no queries).

At this stage, no sharing is beneficial since onlyb aggregates are actually needed (one for each query).

Using the initialb queries, we can write an additional2b − 1 − b queries by combining them via

disjunction, i.e. queryx matches data that satisfies queryb1 andb2, queryy matches data satisfyingb2 or

b3, etc. One such additional query is outlined in Figure 5.2(a). In this case there are2b such combinations

from which we subtract the originalb queries and the combination that is the disjunction of the empty set of

queries. The additional queries do not introduce any additional fragments.

These new2b − 1 − b queries can be answered if we have the answers to the originalb queries.

Since the aggregate functions we consider here are duplicate insensitive, the disjunction of multiple queries

is simply their aggregation. So if we compute the aggregatesfor the originalb queries, we can clearly answer
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Figure 5.2: Example Venn diagrams for duplicate insensitive construction (a) and the duplicate sensitive
construction (b). In (a) the additional queryb1 ∪ b2 is outlined. In (b) the additional queryb1 ∪ c1 ∪ c2 is
outlined.

the originalb queries plus the new2b−b−1 queries for a total of2b−1 queries. Thus,Gt = Gf = 1− b
2b

−1
.

As b→∞ the gain approaches1 which is maximal.

The intuition behind this construction is that queries thatare the disjunction of other queries lead to

sharing opportunities. While the firstb base queries have significant amounts of overlap, the overlap creates

additional fragments because each query has a unique set of matching data. It should be noted that none of

the2b−1 fragments created from theb base queries are actually used to answer any queries, instead theb base

queries are computed directly and used to compute the additional2b − 1 − b queries. This is only possible

because the aggregation functions are duplicate insensitive and the overlap in data between theb base queries

does not affect the answer for the additional queries.

Furthermore, it is not necessary that theb base queries are explicitly requested by users. If only

the additional queries were issued, those queries could still be answered using justb global fragments. This

means that the gain is realized when the query set is just the disjunction of a smaller number of overlapping

fragments.

5.7.2 Duplicate Sensitive

This construction is similar to the previous construction,with b base queries and2b − 1 fragments.

Now we addc non-overlapping queries such that data that satisfies one ofthec queries and does not match

any other query (fromb or c). Thus, there arec additional fragments for a total ofb + c fragments.

We now add2c − 1− c additional queries based solely on thec non-overlapping queries by taking

the disjunction of every possible combination of thec queries. These queries can be answered by aggregating

the answers from the originalc queries. Note, this does not count any tuple twice since thec queries were

non-overlapping.

Finally, we add(2c−1)× (b) more queries by taking the disjunction of every possible combination

of the c queries and exactly one query from theb base queries. For example, we takec1 ∪ b1, c2 ∪ b2,

c1 ∪ c2 ∪ b1 andc1 ∪ c2 ∪ b2, etc. One such additional query is outlined in Figure 5.2(b). Since each of these

additional queries is only the disjunction of one query fromb, there is still no overlap, so no data is counted
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multiple times.

In summary we haveb + c + 2c − 1 − c + (2c − 1) × b queries which could be answered using

b + c fragments. This leads to a total gain of1 − b+c
2c

−1+b×2c , and fragment gain of1 − b+c
2b

−1+c
. As b andc

approach infinity, the total and fragment gains approach1 which is maximal.

Intuitively, thec queries are the source of sharing, since we are able to construct many additional

queries that are the disjunction of multiple basec queries. Theb queries are the source of the fragment gain,

since the overlap they create increases the number of fragments that are not needed.

5.8 Experimental Evaluation

In this section we evaluate the performance of the various decomposition methods we have pre-

sented. Rather than focus on a specific workload from a speculative application, we pursue an experimental

methodology that allows us to map out a range of possible workloads, and we evaluate our techniques across

that range.

We present a random workload generator based on our analysisof the gain potential in the previous

section. This generator allows us to methodically vary the key parameters of interest in evaluating our tech-

niques: the workload size, and the degree ofpotentialbenefit that our techniques can achieve. Within various

settings of these parameters, we then compare the relative costs and benefits of our different techniques. After

describing our workload generator, we present our experimental setup and our results.

5.8.1 Workload Generators

We designed a workload generator that allows us to input thedesired sizeand total gain for a

testF matrix. By controlling the total gain we are able to test the effectiveness of our algorithms. Using

the combination of the two knobs we can explore various workloads. We have two generators, one for

duplicate sensitive aggregates and one for duplicate insensitive aggregates, that create testF matrices. The

constructions from the previous section are used to developthese generators.

For the duplicate insensitive generator we can calculate the number of basis rows,b, the number of

fragments,f , and the number of queries,q, based on the desired matrix size and gain. Each of theb basis

rows maps to one of theb base queries in the constructor. Instead of generating all2b − 1 fragments, we

uniformly at randomly select thef fragments from the set of possible fragments. Analogously,we uniformly

at random select unique additional columns (queries) from the set of up to2b − b − 1 possible additional

queries. The generation is finalized by randomly permutating the order of the rows and columns.

This construction gives us a guarantee on the upper bound forthe minimum number of basis rows

needed,b. The optimal answer may in fact be smaller if the rows selected from the set of2b−1 can be further

reduced. Since the rows are chosen randomly, such a reduction is unlikely. In our experiments, we attempt to

check for any reduction using the most effective algorithmswe have.

The duplicate sensitive generator works much the same, except with the addition of thec basis
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rows. The additional columns (queries) are generated by ORing a random combination of thec base queries

and up to one of theb base queries. Values for the number ofb andc queries are randomly chosen such that

their sum is the desired number of basis rows and such thatb is large enough to ensure enough bitmaps can

be generated andc is large enough that enough combination of queries can be generated.

Also note that the originalb (andc) queries remain in the test matrix for both generators; while

this may introduce a bias in the test, we are unable to remove these queries and still provide a reasonable

bound on the optimal answer. Without knowing the optimal answer it is hard to judge the effectiveness of our

algorithms.

5.8.2 Experimental Setup

We have implemented in Java all of the decomposition algorithms presented in the previous sec-

tions. Our experiments were run on dual 3.06GHz Pentium 4 Xeon (533Mhz FSB) machines with 2GB of

RAM using the Sun Java JVM 1.5.06 on Linux. While our code makes no specific attempt to utilize the dual

CPUs, the JVM may run the garbage collector and other maintenance tasks on the second CPU. All new JVM

instances are first primed with a small matrix prior to any timing to allow the JVM to load and compile the

class files.

Furthermore, we have also implemented our techniques on topof PIER. Three operators, a frag-

mentation, deconstruction, and reconstruction operatorswere added. This has enabled us to verify the benefits

of our approach in a realistic setting, over a large-scale distributed query processing engine.

For the LU/QR/SVD decompositions we utilize the JLAPACK library, which is an automatic trans-

lation of the highly optimized Fortran 77 LAPACK 2.0 library. We also tested calling the Fortran library from

C code. Our results showed that the Java version was about thesame speed for the SVD routines (in fact

slightly faster in some instances) while the more optimizedLU and QR routines were about twice as slow

on Java. Overall, the runtime differences are minor and do not effect our conclusions on relative speed or

effectiveness so we only present the results from the Java version.

We employ three key metrics in our study:

• the relative effectiveness(which is equivalent to the relative decrease in-network bandwidth used for

computing the aggregates)

• therunning timesof the decomposition routine

• theabsolute sizeof the resulting matrixA′ which is directly proportional to the network bandwidth

In particular, the relative effectiveness is based on the resulting size ofA′, the estimated optimal

answerk and the number of queriesq. It is defined as(q−|A′|)÷(q−k) or the ratio of attained improvement

to that of an optimal algorithm.

We vary the ratio of the number of fragments to queries (whether the test matrix is short, square,

or long) from1/2 to 2. We repeat each experiment 10 times with different test matrices of the same charac-
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teristics (size and total gain); the results presented include the average and plus/minus one standard deviation

using error-bars.

5.8.3 Results

We first present the result from the linear decomposition algorithms, which prove effective and fast

for linear aggregates. Next, we show results for the duplicate insensitive heuristics where we highlight the

best and worst performing variants. Finally we discuss the results for the basic decomposition algorithm.

Linear Aggregates

Our first set of experiments evaluate the linear aggregate decompositions using the duplicate sensi-

tive workload generator. In Section 5.4 we noted that LU, QR,and SVD can be used to compute toA′. They

differ in their running times, and in practice there is a concern that numerical instability (via rounding during

repeated floating-point arithmetic) can cause the techniques to incorrectly solve for the basis, and produce an

inefficientF ′. Figure 5.3 shows the resulting size ofA′, the overall effectiveness, and the running time for

the three algorithms using square matrices (500 queries with 500 fragments).

QR and SVD give always optimal results by finding the lowest rank and therefore the smallestA′.

LU lagged in effectiveness due to sensitivity to precision limitations, with low effectiveness for matrices that

had small potential gain and near optimal effectiveness formatrices that had high potential. As expected, LU

and QR are substantially faster than SVD in our measurementsby about an order of magnitude. Figure 5.4

shows that runtime increases polynomially (O(q3)) as the size of the test matrix is increased.

F Size Algorithm A′ size % Effective Runtime (ms)

250x500 LU 346.6 (164.1) 53.3% 884.8 (205.0)
250x500 QR 250.0 (151.8) 100% 1057.6 (24.1)
250x500 SVD 250.0 (151.8) 100% 9989.5 (545.5)

500x500 LU 345.6 (164.0) 48.5% 689.3 (159.6)
500x500 QR 250.0 (151.82) 100% 702.15 (81.48)
500x500 SVD 250.0 (151.82) 100% 6931.0 (431.0)

750x500 LU 235.6 (35.4) 83.4% 577.5 (306.4)
750x500 QR 175.0 (56.6) 100% 452.7 (81.0)
750x500 SVD 175.0 (56.6) 100% 3170.5 (311.9)

Table 5.1: Data for all linear algorithms averaged over all total gains for each particular matrix size. Standard
deviation shown in parentheses.

In general, we found that the trends remain the same when the shape of the test matrix is changed.

These results are summarized in the Table 5.1. QR and SVD remain optimal and LU has an overall effective-

ness ranging from 50-85%. As expected, the running times increase for matrices with additional rows and

decrease for matrices with fewer rows.

In summary, QR achieves the best tradeoff of effectiveness and speed. While SVD has been de-

signed to be more robust to floating point precision limits, QR was able to perform just as well on this type
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Figure 5.3: For 500x500 test matrices: (a) shows the resulting size ofA′. The solid line at y=500 represents
the starting size and the lower solid line represents optimal. QR and SVD are always optimal and precisely
overlap each other and the lower solid line. (b) shows the running time for each.
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of binary matrix. LU has no benefit, since it is just as fast as QR, but not nearly as effective in finding the

lowest rank.

Duplicate Insensitive Aggregates

Our second set of tests evaluate the composition family of heuristics using the duplicate insensitive

workload generator. In Figure 5.5 we show the results. For clarity, we include a representative selection

of the algorithms, including the BASIC COMPOSITION and the ADD COMPOSITION using five strategies

(O/R, M/A/P, M/A/D, M/A/W, and M/R/W). The strategies for ADD COMPOSITIONwere chosen since they

include: (1) the best strategy when used with BASIC COMPOSITION, (2) the worse performing, (3) the best

performing and (4) two strategies similar in technique to the best performing. The strategies not shown

have similar shaped curves falling somewhere in the spectrum outlined by those shown. The results for all

algorithms are summarized in the Table 5.2 and have similar shaped curves falling somewhere in the spectrum

outlined by those shown.

The results show that ADD COMPOSITIONwith the M/A/P search strategy is both the most effective

and fastest, although not much more effective than with the O/R strategy (which is substantially slower). This

is somewhat surprising given how different the M/A/P and O/Rstrategies seem. Also note that in most cases

the relative effectiveness and the running time are inversely correlated. This indicates that some algorithms

spend a lot of time searching and producing little benefit.

As explained in Section 5.5 the gain is revealed through the COLLAPSEoperation. However, before

COLLAPSE can be performed often a number of BLEND operations are needed before a COLLAPSE can be

used. Search strategies that search for both COLLAPSE and BLEND at the same time tend to do better than

strategies that search for more and more BLENDs after each other.

For example the M/S/W search strategy will first search for any possible COLLAPSEoperations, and

then search for BLEND operations separately. As an operation is performed the resulting row is considered

for further operations in the same search loop. Even though COLLAPSEs are performed before BLENDs, once

the strategy begins performing BLENDs it will continue to exclusively perform them until no more can be

found. As a result, it gets stuck in this phase of the search loop. Even worse, it performs so many BLEND

operations that they block future COLLAPSE operations and find a poor local minimum. This strategy often

finds a local minimum and ends after it executes only two or three search loops.

In contrast, the O/R and M/A/P strategies are quick to searchfor more COLLAPSE operations after

performing any operation. In the case of M/A/P, all possibleoperations with the given set of rows is computed,

and they are then executed without further searching. Whilethis tends to need many search loops, the strategy

will not get caught in a long stretch of BLENDs. In the case of O/R, after every operation the search loop

ends, and the search restarts. This strategy prevents getting stuck in the BLEND phase, but also wastes time

continually searching the same portion of the search space over and over again after each operation. This

causes the OR strategy to be considerably slower than the M/A/P strategy.

Figure 5.6 shows the running times of the fastest BASIC COMPOSITION and ADD COMPOSITION



79

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100

G
lo

ba
l A

gg
re

ga
te

 C
om

pu
ta

tio
ns

Total Gain Achievable in Workload (%)

Add-MAP
Add-OR

Add-MAW
Basic-MAW

Add-MAD
Add-MRW

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

E
ffe

ct
iv

en
es

s 
(%

) 
10

0=
op

tim
al

Total Gain Achievable in Workload (%)

Add-MAP
Add-OR

Add-MAW
Basic-MAW

Add-MAD
Add-MRW

(b)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  20  40  60  80  100

R
un

tim
e 

(m
s)

Total Gain Achievable in Workload (%)

Add-MAP
Add-OR

Add-MAW
Basic-MAW

Add-MAD
Add-MRW

(c)

Figure 5.5: For 100x100 test matrices (a) shows the resulting size ofA′. The solid line at y=100 represents
the starting size and the lower solid line represents optimal. (b) shows the relative effectiveness. (c) shows
the running time for each.
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Figure 5.6: The running time as the size of a square matrix is increased.

strategies, for various sized square matrices. Unfortunately, none of the algorithms scale well as the matrix

size is increased. However, the ADD COMPOSITION scales considerably better than the BASIC COMPOSI-

TION algorithm. Effectiveness, not shown, remains the same or slightly increases as the size of the matrix

increases.

Note that the super-linear scaling is not unexpected. The problem of finding a minimal boolean

basis has been shown to be equivalent to finding the minimal number of maximal cliques in a bipartite

graph [51]. Finding the maximal bi-clique is not only NP-Hard, but also is known to be hard to approximate.

Our solution, while not fully exhaustive, considers a very large number of possibilities and produces near-

optimal answers in our experiments.

In summary, the ADD COMPOSITION algorithm with the M/A/P search strategy is the clearly the

winner. It is 70-90% effective in finding the smallest basis set, and is often the fastest algorithm for duplicate

insensitive aggregates.

Basic Decomposition

As expected, our basic decomposition presented in Section 5.3 which works for all aggregate func-

tions, is ineffective in most situations. Due to space limitations we do not show any results and only sum-

marize our findings. For duplicate sensitive tests, the algorithm can often produce answers that are worse

than no-sharing, generating anA′ that has more entries than the number of queries, and in rare cases showing

modest sharing of 5-20% optimal. The algorithm performs best in cases where there is large sharing potential.

Perhaps the only redeeming characteristic of the algorithmis that it is fast, running faster than a half second

for 500 queries, and only a few seconds for 1500 queries. For duplicate insensitive tests, the algorithm finds

sharing potential extremely rarely, but runtime remains the same. This is expected, since the algorithm makes

no attempt to exploit the duplicate insensitive property.

Given these results, it is clear that this general-purpose technique should not be used when our
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special-purpose solutions can be used (i.e., for duplicateinsensitive and linear aggregates.) Non-linear,

duplicate-sensitive aggregates appear to be an extremely difficult family to optimize in our context.

Result from PIER

Figure 5.7 depicts the total network communication savingsachieved by our duplicate insensitive

techniques executing over the PIER as a function of the totalgain achievable in the query workload. In

this specific experiment, PIER was configured to use the Bamboo DHT over1, 024 nodes, and run standard

hierarchical MAX queries; furthermore, each node had a randomly-generated data distribution such that all

nodes share the sameF matrix and explicit synchronization was not needed.

The numbers shown are for a workload of100 concurrent MAX aggregation queries. The “indi-

vidual queries” line shows the baseline communication overhead when the multi-query optimization feature

is not utilized. The “non-optimized” line uses the multi-query optimization feature, butdoes not perform any

actual sharing, and instead uses the identity fragment matrix forF ′ — the line just serves to illustrate the

communication overhead of multi-query optimization (essentially, the overhead of shipping the longer frag-

ment identifiers). Finally, the last line employs our Add-MAP optimization strategy, demonstrating a very

substantial, linear decrease in communication cost as the achievable gain in the workload increases.
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F Size Algorithm A′ size % Effective Runtime (ms)

50x100 Basic-M/A/W 60.9 (17.3) 53.6% 33304 (16694)
50x100 Add-O/A 57.6 (16.3) 58.4% 28416 (20980)
50x100 Add-O/R 48.6 (12.2) 73.1% 19622 (4780)
50x100 Add-O/S 49.4 (11.8) 72.0% 9059 (3484)
50x100 Add-M/A/D 55.6 (16.4) 61.5% 35145 (13880)
50x100 Add-M/A/P 45.2 (11.8) 78.3% 2730 (733)
50x100 Add-M/A/W 52.6 (14.3) 66.5% 5190 (2035)
50x100 Add-M/R/D 87.6 (5.2) 18.4% 33409 (16544)
50x100 Add-M/S/D 49.7 (12.7) 71.4% 12675 (4488)
50x100 Add-M/R/P 87.9 (5.1) 18.1% 33475 (16116)
50x100 Add-M/S/P 87.9 (5.1) 18.1% 33145 (15982)
50x100 Add-M/R/W 87.6 (5.2) 18.4% 33424 (16580)
50x100 Add-M/S/W 99.8 (0.4) 0.3% 22610 (1681)

100x100 Basic-M/A/W 77.8 (16.5) 47.5% 38740 (14815)
100x100 Add-O/A 77.1 (20.3) 41.4% 36493 (21889)
100x100 Add-O/R 67.3 (20.7) 72.2% 26433 (15700)
100x100 Add-O/S 66.7 (20.3) 74.1% 9924 (6624)
100x100 Add-M/A/D 77.3 (20.5) 41.1% 45602 (23751)
100x100 Add-M/A/P 64.6 (21.2) 79.6% 4170 (1737)
100x100 Add-M/A/W 71.7 (20.4) 58.0% 6975 (2265)
100x100 Add-M/R/D 96.5 (4.7) 6.0% 56812 (28320)
100x100 Add-M/S/D 67.7 (20.0 72.3% 14727 (12835)
100x100 Add-M/R/P 96.3 (5.1) 6.2% 56416 (27898)
100x100 Add-M/S/P 96.3 (5.1) 6.2% 56453 (27972)
100x100 Add-M/R/W 96.5 (4.7) 6.0% 56754 (28308)
100x100 Add-M/S/W 99.6 (0.8) 1.5% 18984 (9136)

150x100 Basic-M/A/W 77.3 (15.5) 48.6% 44446 (18225)
150x100 Add-O/A 78.0 (19.8) 40.8% 46702 (28646)
150x100 Add-O/R 67.6 (20.4) 71.1% 39248 (25552)
150x100 Add-O/S 65.8 (20.5) 76.1% 11672 (8922)
150x100 Add-M/A/D 77.9 (20.1) 40.6% 59397 (36990)
150x100 Add-M/A/P 64.6 (21.1) 79.9% 5788 (2554)
150x100 Add-M/A/W 71.9 (20.1) 57.6% 8694 (3107)
150x100 Add-M/R/D 96.7 (4.4) 6.0% 67981 (31839)
150x100 Add-M/S/D 67.7 (20.2) 73.2% 18458 (16314)
150x100 Add-M/R/P 96.5 (5.0) 6.3% 68117 (32045)
150x100 Add-M/S/P 96.5 (5.0) 6.3% 68173 (32209)
150x100 Add-M/R/W 96.7 (4.4) 6.0% 67929 (31739)
150x100 Add-M/S/W 99.6 (1.0) 1.5% 22105 (12201)

Table 5.2: Data for all duplicate sensitive algorithms averaged over all total gains for each particular matrix
size. Standard deviation shown in parentheses.
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Chapter 6

Related Work

PIER is the first and only major effort toward an Internet-scale relational query system. However it

is inspired by and related to a large number of other projectsin both the DB and Internet communities.

6.1 Internet Systems

The leading example of a massively distributed system is theInternet itself. The soft-state consis-

tency of the Internet’s internal data [14] is one of the chiefmodels for our work. On the schema standardiza-

tion front, we note that significant effort is expended in standardizing protocols (e.g. IP, TCP, SMTP, HTTP)

to ensure that the “schema” of messages is globally agreed-upon, but that these standards are often driven by

popularly deployed software. While rarely stored persistently, the number of bytes generated from each of

these “schemas” annually is enormous.

There are two very widely-used Internet directory systems that have simple query facilities. DNS is

perhaps the most ubiquitous distributed query system on theInternet. It supports exact-match lookup queries

via a hierarchical design in both its data model (Internet node names) and in its implementation, relying on a

set of (currently 13) root servers at well-known IP addresses. LDAP is a hierarchical directory system largely

used for managing lookup (selection) queries. There has been some work in the database research community

on mapping database research ideas into the LDAP domain and vice versa (e.g., [42]). These systems have

proved effective for their narrow workloads, though there are persistent concerns about DNS on a number of

fronts [58].

As is well known, P2P filesharing is a huge phenomenon, and systems like KaZaA, Gnutella,

eDonkey, and BitTorrent each have hundreds of thousands of users at any given time. These systems typically

provide simple Boolean keyword query facilities (without ranking) over short file names, and then coordinate

point-to-point downloads. In addition to having limited query facilities, they are ineffective in some basic

respects at answering the queries they allow; the interested reader is referred to the many papers on the subject

(e.g., [49, 84]).
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6.2 Database Systems

Query processing in traditional distributed databases focused on developing bandwidth-reduction

schemes, including semi-joins and Bloom joins, and incorporated these techniques into traditional frame-

works for query optimization [61]. Mariposa was perhaps themost ambitious attempt at geographic scal-

ing in query processing, attempting to scale to thousands ofsites [75]. Mariposa focused on overcoming

cross-administrative barriers by employing economic feedback mechanisms in the cost estimation of a query

optimizer. To our knowledge, Mariposa was never deployed orsimulated on more than a dozen machines,

and offered no new techniques for queryexecution, only for query optimization and storage replication. By

contrast, we have deferred work on query optimization, preferring to first design and validate the scalability

of our query execution infrastructure.

Many of our techniques here are adaptations of query execution strategies used in parallel database

systems [21]. Unlike distributed databases, parallel databases have had significant technical and commercial

impact. While parallelism per se is not an explicit motivation of our work, algorithms for parallel query

processing form one natural starting point for systems processing queries on multiple machines.

PIER’s architecture and algorithms are closer to parallel database systems like the Gamma Sys-

tem [20], Volcano [26], etc. – particularly in the use of hash-partitioning during query processing. Naturally

the parallel systems do not typically worry about distributed issues like multi-hop Internet routing in the face

of node churn. Some algorithms, such as Bloom joins originated from the IBM research project R* [53],

which was the distributed version of System R.

In terms of its data semantics, PIER most closely resembles centralized data integration and web-

query systems like Tukwila [40] and Telegraph [70]. Those systems also reached out to data from multiple

autonomous sites, without concern for the storage semantics across the sites.

Another point of reference in the database community is the area of distributed stream query pro-

cessing, an application that PIER supports. The Borealis proposal [13] focuses on a small scale of distribution

within a single administrative domain, with stronger guarantees and support for quality-of-service in query

specification and execution. The Medusa project [5] augments this vision with Mariposa-like economic ne-

gotiation among a few large agents.

The HiFi project [22] discusses the challenges with high fan-in systems. In particular they examine

RFID applications which generate large amounts of data at the edge of the network. Through a hierarchy of

processing the quantity of data is reduced to an amount suitable for a single centralized system. The project

focuses on removing anomalies, interpolating missing data, removing duplicates, and validating the stream

of readings.

Tian and DeWitt presented analytical models and simulations for distributed eddies [76]. Their

work illustrated that the metrics used for eddy routing policies in centralized systems do not apply well in the

distributed setting. Their approaches are based on each node periodically broadcasting its local eddy statistics

to the entire network, which would not scale well in a system like PIER.

In terms of declarative query semantics for widely distributed systems, promising recent work
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by Bawa et al. [7] addresses in-network semantics for both one-shot and continuous aggregation queries,

focusing on faults and churn during execution. In the PIER context, open issues remain in capturing clock

jitter and soft state semantics, as well as complex, multi-operator queries.

Somewhat more tangential are proposals for query processing in wireless sensor networks [10, 54].

These systems share our focus on peer-to-peer architectures and minimizing network costs, but typically

focus on different issues of power management, extremely low bandwidths, and very lossy communication

channels.

6.3 Distributed Hash Tables

Most traditional massively scalable query systems (e.g. DNS, P2P filesharing) use a hierarchi-

cal scheme to enhance recall. Hierarchical architectures raise concerns about scalability, availability, and

resilience to attack, since they display centralized characteristics towards the root of the hierarchy.

By contrast, DHTs [63, 74, 87, 68] provide a flat, truly peer-to-peer topology for distributed

lookups. Different DHT schemes differ in their details, butall provide common facilities: the ability to

partition a value domain across multiple machines, to efficiently (in few network hops) route messages by

value to the node responsible for the value’s partition, to provide some transient storage and retrieval of these

messages, and to efficiently reconstruct the topology in theface of frequent node arrivals and departures.

6.4 Hybrids of P2P and DB

Gribble, et al. were the first to make the case for a joint research agenda in P2P technologies and

database systems [30]. Another early vision of P2P databases was presented by Bernstein et al. [8], who used

a medical IT example as motivation for work on what is sometimes called “multiparty semantic mediation”:

the semantic challenge of integrating many peer databases with heterogeneous schemas. This area was a main

focus of the Piazza project; a representative result is their work on mediating schemas transitively as queries

propagate across multiple databases [34]. From the perspective of PIER and related Internet systems, there are

already clear challenges and benefits in unifying the abundant homogeneousdata on the Internet [39]. These

research agendas are complementary with PIER’s. An early effort in this regard is the PeerDB project [59],

though it relies on a central directory server, and its approach to schema integration is quite simple.

PIER is not the only system to address distributed querying of data on the Internet. The IrisNet

system [24] has similar goals to PIER, but its design is a stark contrast: IrisNet uses a hierarchical data

model (XML) and a hierarchical network overlay (DNS) to route queries and data. As a result, IrisNet

shares the characteristics of traditional hierarchical databases: it is best used in scenarios where the hierarchy

changes infrequently, and the queries match the hierarchy.Astrolabe [78] is another system that focuses on

a hierarchy: in this case the hierarchy of networks and sub-networks on the Internet. Astrolabe supports a

data-cube-like roll-up facility along the hierarchy, and can only be used to maintain and query those roll-ups.
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Another system that shared these goals was Sophia [80], a distributed Prolog system for network

information. Sophia’s vision was essentially a superset ofPIER’s, inasmuch as the relational calculus is a

subset of Prolog. Sophia never developed distributed optimization or execution strategies, the idea being that

such functionality could be coded in Prolog as part of the query. Another workshop proposal for peer-to-peer

network monitoring software is presented in [72], including a simple query architecture, and some ideas on

trust and verification of measurement reports.

P2 [48] is another distributed dataflow system. P2 uses a novel high-level declarative language,

NDLog [47], which is based on Datalog. The initial work of theP2 project is focused on implementing

overlay networks (including DHTs) and other network protocols using P2. NDLog provides for recursive

queries (which are required for most network protocols) andautomatic execution optimization. This enables

the implementation of complex overlay networks in 100x fewer lines of code. The initial development of

NDLog used PIER before the P2 team developed their own dataflow system.

Range indexing is another topic that is being explored in multiple projects (e.g., [18, 9, 33], etc.)

We favor the PHT scheme in PIER because it is simpler than mostof these other proposals: it reuses the DHT

rather than requiring a separate distributed mechanism as in [18], it works over any DHT (unlike Mercury [9]),

and it appears to be a good starting point for resiliency, concurrency, and correctness – issues that have been

secondary in most of the related work.

6.5 Multiquery Optimization

Much of the prior work on multi-query optimization (such as [69]) focuses on select/project/join

queries. Our work addresses aggregation, which was not widely addressed in prior research.

For the case of asingle distributed aggregation query, efficient in-network execution strategies

have been proposed by several recent papers and research prototypes (including, for instance, TAG [54],

SDIMS [83]). The key idea in these techniques is to perform the aggregate computation over a dynamic

tree in an overlay network. Aggregation occurs over a dynamic tree, with each node combining the data

found locally along with anyPartial State Records (PSRs)it receives from its children, and forwarding the

resulting PSR one hop up the tree. Over time, the tree dynamically adjusts to changing node membership and

network conditions. More recent work on distributed data streaming has demonstrated that, with appropriate

PSR definitions and combination techniques, in-network aggregation ideas can be extended to fairly complex

aggregates, such as approximate quantiles [17, 29], and approximate histograms and join aggregates [16].

None of this earlier work considers the case of multiple distributed aggregation queries, essentially assuming

that such queries are processed individually, modulo perhaps some simple routing optimizations. For exam-

ple, PIER suggests using distinct routing trees for each query in the system, in order to balance the network

load [38].

In the presence of hundreds or thousands of continuous aggregation queries, system performance

and scalability depend upon effective sharing of executioncosts across queries. Recent work has suggested
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solutions for thecentralizedversion of the problem, where the goal is to minimize the amount of compu-

tation involved when tracking (1) several group-by aggregates (differing in their grouping attributes) [86],

or (2) several epoched aggregates (differing in their epochsizes and/or selection predicates) [44, 46], over

a continuous data streamobserved at a single site. In the distributed setting, network communication is the

typical bottleneck, and hence minimizing the network traffic becomes an important optimization concern.

In an independent effort, [77] proposes a distributed solution for linear aggregates. Their scheme is

based on heuristics tailored to power-constrained sensornets where the query workload is restricted to astatic

collection of simple spatial predicates related to the network topology. Instead, our dynamic fragment-based

method does not have any restrictions on the query predicates, and employs optimal linear-algebra techniques

to uncover sharing across linear aggregates. They also observe the analogy to the Set-Basis problem for

MIN/MAX aggregates but do not propose any algorithmic solution for the duplicate-insensitive case.
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Chapter 7

Conclusion

In this thesis we presented a query processor designed to aggressively use DHTs to implement

many traditional DBMS functions. Here we take a moment to enumerate the various ways the DHT is used.

• Query Dissemination.The multi-hop topology in the DHT allows construction of query dissemination

trees as described in Section 3.3.3. If a table is published into the DHT with a particular namespace

and partitioning key, then the query dissemination layer can route queries with equality predicates on

the partitioning key to just the right nodes.

• Hash Index: If a table is published into the DHT, the table is essentiallystored in a distributed hash

index keyed on the partitioning key. Similarly, the DHT can also be used to create secondary hash

indexes (as used in the symmetric semi-join in Section 4.3.2).

• Range Index Substrate:The PHT technique provides resilient distributed range-search functionality

by mapping the nodes of a trie search structure onto a DHT [65].

• Partitioned Parallelism: Similar to the Exchange operator [26], the DHT is used to partition tuples

by value, parallelizing work across the entire system whileproviding a network queue and separation

of control-flow between contiguous groups of operators (opgraphs).

• Operator State: Because the DHT has a local storage layer and supports hash lookups, it is used

directly as the main-memory state for operators like hash joins and hash-based grouping, which do not

need to maintain their own separate hash tables.

• Hierarchical Operators: The inverse of a dissemination trees is an aggregation tree,which exploits

multi-hop routing and callbacks in the DHT to enable hierarchical implementations of dataflow opera-

tors (aggregations in Section 4.2 and joins in Section 4.3).

We showed that PIER can be used to efficiently execute aggregation and join queries. Aggregation

queries can be executed using a wide-range of strategies. Wediscussed five dimensions to classify the vari-
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ous strategies, including the structure of the aggregationcommunication, whether in-network aggregation is

performed, the routing method, the dynamism of the routing,and the timing of communication.

Our results showed that using the DHT’s routing alone to derive the aggregation tree is not efficient.

By using the DHTs routing and additional query processing logic we were able to construct a more efficient

tree that eliminates network bottlenecks. Furthermore, byexposing the topology to the application we were

able to choose timing that reduces latency and extra networkcommunication.

We showed that for executing joins the use of the DHT imposes some modest overhead, the DHT

provided a feasible and scalable platform for executing joins. We presented a number of algorithms (symmet-

ric hash join and Fetch Matches) and rewrite strategies (symmetric semi-join and Bloom joins). We showed

their performance tradeoffs of the different strategies under different workloads.

Finally, in Chapter 5 we showed that in an environment where there are many simultaneous aggre-

gation queries, we can further optimize the execution to significantly reduce network communication. We

developed novel algorithms to optimize hundreds of simultaneous queries and explored the performance and

effectiveness of them.

Overall we presented a complete system that achieves the goal of providing a rich query language

with location transparency and scalability with relaxed semantics. The design, architecture, and algorithms

presented in thesis can be used to build Internet-scale, data intensive applications.
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Appendix A

UFL Language

UFL is a low level syntax for writing queries for execution inPIER. UFL is loosely based on *nix

object-oriented configuration files.

The grammar for UFL is listed below:

• <Query> ::= (<Object>)+

• <Object> ::= ’%’ <ObjectType> ’(’ <ObjectName> ’)’

’ {’ (<Object> | <Setting>) * ’ }’

• <ObjectType> ::= ’opgraph’ | ’operator’ | ’predicate’

• <ObjectName> ::= <TextString>

• <Setting> ::= <Key> (’[’ (<Index>)? ’]’)? ’=’ <Value>

• <Key> ::= <TextString>

• <Value> ::= <LiteralTextString> | <Expression>

• <Index> ::= <TextString>

• <Expression> ::= <ExpressionConstant> | <ExpressionFiel d> |

<ExpressionFunction>

• <ExpressionConstant> ::= <LiteralTextString> ’::’ <Cast Type>

• <CastType> ::= <TextString>

• <ExpressionField> ::= ’$’ <LiteralTextString>

• <ExpressionFunction> ::= <FunctionName> ’(’

(<Parameter> (’,’ <Parameter>) * )? ’)’
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• <FunctionName> ::= <LiteralTextString>

• <Parameter> ::= <Expression>

• <TextString> ::= ([’a’-’z’, ’A’-’Z’, ’0-9’, ’.’, ’ * ’, ’-’, ’ ’, ’/’])+

• <LiteralTextString> ::= <TextString> | ’"’

(<LiteralChar> | <LiteralEscape>) * ’"’

• <LiteralChar> ::= Any char except\or ’

• <LiteralEscape> ::= ’ (́<Unicode> (’$’)? | <QueryExpansion>

(’$’)? | ’ \$’ | ’"’ (’$’)?)

• <Unicode> ::= ’u’ [’0-9’, ’A-F’, ’a-f’] [’0-9’, ’A-F’, ’a-f ’]

[’0-9’, ’A-F’, ’a-f’] [’0-9’, ’A-F’, ’a-f’]

• <QueryExpansion> ::= ’qt’ | ’qi’

There are three types of objects: opgraph, operator and predicate. Any operator object must be

embedded within an opgraph object. Likewise any predicate object must be embedded in an operator object.

Although the grammar does not specifically enforce the nesting, the UFL parser does. All objects are named

which can then be used as references to that object.

Settings are key-value pairs that belong to the object they are specified in. Settings can have flat,

array or hash table values. Each element of the array or hash table is listed as a separate setting with a different

index. To illustrate the types of settings:

• Flat: No index is specified

type = SCAN

• Array: Index represents position in array, starting with zero. Theelements may be listed in any order.

Elements with no index specified will be appended to the end ofthe array in the order listed.

RenameList[0] = Column1

RenameList[40] = Column2

RenameList[2] = Column3

RenameList[] = Column4

• Hash Table: Index represents the key for the entry in the hash table.

Options[FE] = 100

Options[FW] = 20

Options[FC] = 32

The type (hash table or array) of the setting is inferred based on the first use. If the first listing of

the setting uses an integer typed index value it is assumed tobe an array, otherwise it is a hash table. To force
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a hash table structure even when using numeric keys, a dummy entry having an index of ’*’ and any value is

specified.

The parser recognizes a number of settings for each type of object. A partial list for each object is

listed below:

• opgraph:

– ns the namespace for the query dissemination, optional.

– rid the resource identifier for the query dissemination, optional.

– duration a long integer representing the duration of execution in seconds.

• operator:

– type the type of operator: cache, dupelim, eddy, flowcontrol, groupby, join, null, projection,

put, queue, result, scan, selection, tee or union.

– implementation the specific implementation of the operator. This permits multiple imple-

mentations of the same operator.

– sources - an array representing the parent operators

– There are also operator type specific settings.

• predicate:

– type the type of predicate or set, valid values include: and, or, or atomic

– leftexpression - an expression (as defined by the grammar), only valid if the type is atomic.

– rightexpression - an expression (as defined by the grammar), only valid if the type is atomic

– op the predicate operator, valid values include: =, !=, ¿, ¿=, ¡, ¡=, equals, notequals, greaterthan,

greaterthanequals, lessthan, and lessthanequals, only valid if the type is atomic.
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Appendix B

One-Shot Aggregation Algorithms

• IP-1L-Optimal. The query specifies the root using an IP socket address and thenumber of nodes,n,

participating in the query. Every node directly send a single PSR containing the aggregate of all local

data to the root using a direct IP message. After the root receives and aggregatesn values the query

is complete and the result is forwarded to the requester. Note thatn is generally not known in large

dynamic system.

• IP-1L-Timeout. The query specifies the root using a IP socket address and a timeout condition. As

with IP-1L-Optimal every node sends a single PSR to the root using a direct IP message. Once the

timeout condition is satisfied at the root the result is produced. If additional data arrives after the

timeout, the timeout condition is reset and a revised resultis produced when the next timeout occurs.

• DHT-1L-Optimal. The query specifies the root using a DHT ID and the number of nodes,n, partici-

pating in the query. Every node sends a single PSR to the root’s DHT ID using the DHTput function.

The root uses thelScan andnewData functions to receive the PSRs. After the root receivesn values

the result is produced.

• DHT-1L-Timeout. The query specifies a root using a DHT ID and a timeout condition. As withDHT-

1L-Optimal every nodes send a single PSR to the root’s DHT ID using the DHTput function. Once

the timeout condition is satisfied at the root, the result is produced. If data arrives after the timeout, the

timeout condition is reset and a revised result is produced when the next timeout occurs.

• DHT-ML-Optimal. The query specifies a root using a DHT ID and the number of nodes, n, participat-

ing in the query. Every node sends a single PSR towards the root using the DHTsend function. Each

node also listens for PSRs using the DHTupcall . When a node other than the root receives a PSR, the

node simply forwards the PSR to the next hop usingsend without any additional processing. After the

root receivesn values the result is produced. This algorithm will cause interior nodes to send multiple

PSRs.
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• DHT-ML-Timeout. The query specifies a root using a DHT ID and a timeout condition. As with

DHT-ML-Optimal every node sends a single PSR towards the root’s DHT ID using the DHT send

function and forward any PSRs they receive. Once the timeoutcondition is satisfied at the root, the

result is produced. If additional data arrives at the root after the timeout, the timeout condition is reset

and a revised result is produced when the next timeout occurs. This algorithm will cause interior nodes

to send multiple PSRs.

• DHT-Hi-Optimal. The query specifies a root using a DHT ID. In addition, the query must specify the

number of nodes that each interior node should receive data from (not just the root). This requirement

is just looser than specifying the topology in the query since interior nodes just need to be informed

how many nodes they should receive PSRs from, not the IDs/IPsof those nodes. Every leaf node sends

a single PSR towards the root’s DHT ID using the DHTsend function. Each node listens for PSRs

using the DHTupcall method. When a node receives the specified number of PSRs, it combines the

PSRs using the aggregation function and forwards a single PSR to the next hop using thesend . When

the root receives the specified number of PSRs the result is produced. This algorithm is not supported

by PIER since the topology generated by the DHT is not knowna priori so the expected number of

messages can not be pre-determined.

• DHT-Hi-Timeout. The query specifies a root using a DHT ID and a timeout condition. As withDHT-

Hi-Optimal every node sends a single PSR towards the root’s DHT ID using the DHTsend function,

and listens for PSRs using the DHTupcall method. Once the timeout condition is reached at a node,

the node combines the PSRs using the aggregation function and forwards a single PSR to the next

hop using thesend . When the timeout condition is reached at the root the resultis produced. This

algorithm will cause interior nodes will send at least two PSRs with nodes higher in the tree sending

more (number of messages is equal to the node’s height in the tree where leaf nodes have height one). If

at a node (including the root) data arrives after the timeout, the timeout condition is reset and a revised

PSR (or result) is produced.
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Appendix C

Continuous Aggregation Algorithms

• IP-1L-Optimal , IP-1L-Timeout , DHT-1L-Optimal , andDHT-1L-Timeout. Same algorithms as for

one-shot queries except the same process is repeated for every epoch with each message containing an

epoch field.

• IP-1L-Learned. The query specifies a root using an IP socket address and a child cleanup timeout

value. For each epoch every node directly sends a single PSR containing the aggregate of all local data

to the root. The root maintains a list of children and after receiving PSRs from all children (all other

nodes) produces the answer for that epoch. Children are removed from the list after not sending any

PSRs within the specified child cleanup timeout.

• DHT-1L-Learned. The query specifies a root using a DHT ID and a child cleanup timeout value. For

each epoch every node directly sends to the root DHT ID using the DHTput function. The root uses

lScan andnewData to receive PSRs. The root maintains a list of children and after receiving PSRs

from all children (all other nodes) produces the answer for that epoch. Children are removed from the

list after not sending any PSRs within the specified child cleanup timeout.

• DHT-ML-Optimal andDHT-ML-Timeout. Same algorithms as for one-shot queries except the same

process is repeated for every epoch with each message containing an epoch field.

• DHT-ML-Learned. The query specifies a root using a DHT ID and a node cleanup timeout value. For

each epoch every node sends a single PSR towards the root’s DHT ID using the DHTsend function.

Each node also listens for PSRs using the DHTupcall . When a node other than the root receives a PSR

it immediately forwards the PSR to the next hop usingsend . The root maintains a list of nodes and

after receiving PSRs from all nodes produces the answer for that epoch. Nodes are removed from the

list after not sending any PSRs within the specified node cleanup timeout. This algorithm will cause

interior nodes to send multiple PSRs.

• DHT-ML-S-Optimal. The query specifies a root using a DHT ID and the number of nodes, n, partic-
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ipating in the query. On the first epoch every node sends a single PSR towards the root using the DHT

send function remembering the ID of the next hop node. On subsequent epochs the node will send its

PSR to the same node using the stored ID from the first epoch. Ifthat node is no longer reachable, the

DHT will automatically route the message to the node with theclosest ID. Each node also listens for

PSRs using the DHTupcall . When a node other than the root receives a PSR, is immediately forwards

the PSR to the next hop usingsend . After the root receivesn values the answer is produced. This

algorithm will cause interior nodes to send multiple PSRs. Since the DHT API does not report the

actual next hop ID1, this algorithm is not implemented in PIER.

• DHT-ML-S-Timeout. The query specifies a root using a DHT ID and a timeout condition. As with

DHT-ML-S-Optimal , in the first epoch the PSR is routed to the root ID using the DHTsend function

remembering the ID of the next hop node, subsequent epochs send to that same ID unless the node is

not reachable, and each node forwards any PSRs it receives. When the timeout condition is reached

at the root the result is produced. If data arrives at the rootafter the timeout, the timeout condition

is reset and a revised answer is produced when the next timeout occurs. This algorithm requires that

interior nodes send multiple PSRs. Again, since the DHT API does not report the actual next hop this

algorithm is not implemented in PIER.

• DHT-ML-S-Learned. The query specifies a root using a DHT ID and a node cleanup timeout value.

As with DHT-ML-S-Optimal , in the first epoch the PSR is routed to the root’s DHT ID using the DHT

send function remembering the ID of the next hop node, subsequentepochs send to that same ID, and

all non-root nodes immediately forward any PSRs they receive. The root maintains a list of nodes and

after receiving PSRs from all nodes, the root produces the result for that epoch. Nodes are removed

from the list after not sending any PSRs within the specified node cleanup timeout. This algorithm will

cause interior nodes to send multiple PSRs. Again, since theDHT API does not report the actual next

hop this algorithm is not implemented in PIER.

• Tree-ML-Optimal. The query specifies a root using a DHT ID, the number of nodes ofnodes,n,

participating in the query, and the desired maximum number of children (or fan-in of a node). Similar

to DHT-ML-Optimal , in the first epoch every node sends a single PSR towards the root using the DHT

send function. Each node also listens for PSRs using the DHTupcall . When a node other than the root

receives a PSR, it simply forwards the PSR to the next hop using send . After the root receivesn values

the answer is produced. If at any time during or at the end of the epoch a node detects that the node has

more than the maximum number of children, it will send a message to the excess children requesting

that they use contact a different parent in the next epoch. The ID of a non-excess child is included in

the message. If a node receives this redirect message from its parent, it will send subsequent PSRs to

the new ID instead of to the root’s ID. On failure of the new parent, the node will resume sending to the

1The DHT is unable to return the next hop ID synchronously since the next hop is not known until the message is sent, receivedby
the remote node, and ACKed. The DHT could optimistically return the first hop choice synchronously, but this may be wrong if that
node is now unreachable and an alternate route is used.
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root’s ID. This algorithm requires that interior nodes sendmultiple PSRs, and that parents may send

messages to their children.

• Tree-ML-Timeout. The query specifies a root using a DHT ID, a timeout condition,and the desired

maximum number of children. As withTree-ML-Optimal in the first epoch the PSR is routed to the

root ID using the DHTsend function., nodes listen for PSRs using the DHTupcall , and non-root

nodes simply forward the PSRs to the next hop usingsend . If at any time a node detects that it has

more than the maximum number of children, it sends a message to its excess children requesting they

use the ID of a non-excess child as their parent in subsequentepochs until the new parent fails. When

the timeout condition is reached at the root the result is produced. If data arrives after the timeout,

the timeout condition is reset and a revised answer is produced when the next timeout occurs. This

algorithm requires that interior nodes send multiple PSRs and that parents may send messages to their

children.

• Tree-ML-Learned. The query specifies a root using a DHT ID, a node cleanup timeout value, and the

desired maximum number of children. As withTree-ML-Optimal in the first epoch the PSR is routed

to the root ID using the DHTsend function, nodes listen for PSRs using the DHTupcall , and non-root

nodes simply forward the PSRs to the next hop usingsend . If at any time a node detects that it has

more than the maximum number of children, it sends a message to its excess children requesting they

use the ID of a non-excess child as their parent in subsequentepochs until the new parent fails. The

root maintains a list of nodes and after receiving PSRs from all nodes, the root produces the result for

that epoch. Nodes are removed from the list after not sendingany PSRs for the specified node cleanup

timeout. This algorithm requires that interior nodes send multiple PSRs and that parents may send

messages to their children.

• Tree-ML-S-Optimal. The query specifies a root using a DHT ID, the number of nodes,n, participating

in the query, and the desired maximum number of children (or fan-in of a node). On the first epoch

every node sends a single PSR towards the root using the DHTsend function remembering the ID

of the next hop node. On subsequent epochs the node will send its PSR to the same node using the

stored ID from the first epoch. If that node is no longer reachable, the DHT will automatically route

the message to the node with the closest ID. Each node also listens for PSRs using the DHTupcall .

When a node other than the root receives a PSR, is immediatelyforwards the PSR to the next hop using

send . If at any time a node detects that it has more than the maximumnumber of children, it sends

a message to its excess children requesting they use the ID ofa non-excess child as their parent in

subsequent epochs until the new parent fails. After the rootreceivesn values the answer is produced.

This algorithm will cause interior nodes to send multiple PSRs.

• Tree-ML-S-Timeout. The query specifies a root using a DHT ID, a timeout condition,and the desired

maximum number of children (or fan-in of a node). As withTree-ML-S-Optimal , in the first epoch

the PSR is routed to the root ID using the DHTsend function remembering the ID of the next hop
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node, subsequent epochs send to that same ID unless the node is not reachable, and each node forwards

any PSRs it receives. If at any time a node detects that it has more than the maximum number of

children, it sends a message to its excess children requesting they use the ID of a non-excess child as

their parent in subsequent epochs until the new parent fails. When the timeout condition is reached at

the root the result is produced. If data arrives at the root after the timeout, the timeout condition is reset

and a revised answer is produced when the next timeout occurs. This algorithm requires that interior

nodes send multiple PSRs.

• Tree-ML-S-Learned. The query specifies a root using a DHT ID, a node cleanup timeout value, and

the desired maximum number of children (or fan-in of a node).As with Tree-ML-S-Optimal , in the

first epoch the PSR is routed to the root’s DHT ID using the DHTsend function remembering the

ID of the next hop node, subsequent epochs send to that same ID, and all non-root nodes immediately

forward any PSRs they receive. If at any time a node detects that it has more than the maximum number

of children, it sends a message to its excess children requesting they use the ID of a non-excess child

as their parent in subsequent epochs until the new parent fails. The root maintains a list of nodes and

after receiving PSRs from all nodes, the root produces the result for that epoch. Nodes are removed

from the list after not sending any PSRs within the specified node cleanup timeout. This algorithm will

cause interior nodes to send multiple PSRs.

• DHT-Hi-Optimal andDHT-Hi-Timeout. Same algorithms as for one-shot queries except the same

process is repeated for every epoch with each message containing an epoch field.

• DHT-Hi-Learned. The query specifies a root using a DHT ID and a child cleanup timeout value. As

with DHT-Hi-Optimal every node sends a single PSR towards the root’s DHT ID using the DHTsend

function, and listens for PSRs using the DHTupcall method. Each node maintains a list of children

and after receiving PSRs from all children the node combinesthe PSRs using the aggregation function

and forwards a single PSR to the next hop usingsend . If a PSR is not received within the child cleanup

timeout value the child is removed from the list and the PSR issent to the next hop. If a PSR from a

child not on the list is received, or a second PSR is received from any existing child after the PSR for

that epoch has already been sent, an additional PSR is sent.
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