PIER: Internet Scale P2P Query Processing with DistributedHash Tables

by

Ryan Jay Huebsch

B.S. (Rensselaer Polytechnic Institute) 2001
M.S. (University of California at Berkeley) 2003

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Joseph M. Hellerstein, Chair
Professor lon Stoica
Professor Michael Franklin
Professor Ray Larson

Spring 2008

The dissertation of Ryan Jay Huebsch is approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Spring 2008

PIER: Internet Scale P2P Query Processing with DistributedHash Tables

Copyright 2008

by
Ryan Jay Huebsch

Abstract

PIER: Internet Scale P2P Query Processing with Distribttash Tables

by

Ryan Jay Huebsch
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Distributed database systems have long been a topic oéstitierthe database research community. Existing
designs focus on two principles; make the distributiansparentto users and provide a rich declarative
query language with strict semantic guarantees. As a rekait have modest targets for network scalability
with none of these systems being deployed on much more thandfii of distributed sites.

The Internet community has recently become interestedsitnillited query processing. Not sur-
prisingly, they approach this problem from a very differangle than the traditional database literature. The
fundamental goal of Internet systems is to operate at vegglscale (thousands if not millions of nodes). To
achieve this degrees of scale, these system sacrifice tnamsgy and/or flexibility.

This thesis develops a system called PIER (which standseef-to-Peer Information Exchange
and Retrieval”) which provides a rich query language thatvjates location transparency and scalability
with relaxed semantics. We explore the architecture of PeRelop techniques for query processing (with
specific focus on aggregation and join operations), andyirahmine an optimization problem with multiple

simultaneous aggregation queries.

Professor Joseph M. Hellerstein
Dissertation Committee Chair

Contents

List of Figures
List of Tables
1 Introduction
1.1 DesignDecCiSioNS e
1.1.1 Network Scalability, Resilience and Performance
1.1.2 Relaxed Consistency e e
1.1.3 DecoupledStorage e e
1.1.4 Standard Schemas via Grassroots Software e e
1.1.5 Software Engineering. e
1.2 ApplicationSpace e e
1.2.1 P2PFileSharing e
1.2.2 EndpointNetwork Monitoring e
2 Background
2.1 Distributed and Parallel Databases
2.2 Distributed Query ProcessingMethods
2.3 Overlay Networks e e
231 Bamboo e
3 Architecture
3.1 ExecutionEnvironment
3.1.1 Virtual RuntimeInterface oo ..
3.1.2 EventsandHandlers e
3.1.3 Physical Runtime Environment L a L
3.1.4 Simulation Environment L
3.2 Distributed Hash Tables (DHTS) i ae eeeee
321 Naming o e
3.22 Routing e
3.2.3 SoftState e
3.24 Implementation e e
3.3 QUErY ProCesSOr. o o e e e
3.3.1 Data Representation and Access Methods
3.3.2 LifeofaQuery
3.3.3 Query Disseminationand Indexing L.
3.3.4 LocalDataflow
3.35 Operators

3.3.6 FlowControl e

<

arrbNpWWyNFE

3.3.7 ErrorHandling
3.3.8 NoGlobal Synchronization. oL

4 Query Processing
4.1 Experimental Setup e
4.2 Aggregation
4.2.1 One-Shot Aggregation QUEries o v v i i e
4.2.2 Continuous Aggregation QUEries e e
4.3 JOINS . . o e
4.3.1 CoreJoinAlgorithms
4.3.2 JoinRewriting e
4.3.3 Evaluationof Join Strategies e
4.3.4 HierarchicalJoins. e e

5 Multi-Query Optimization
5.1 OVEIVIEW . . . o o
5.1.1 Thelntuition e e
5.1.2 Taxonomy Of Aggregates i i v i i i
5.2 Architecture
5.3 Basic Decomposition Solution L e e
5.4 Linear Aggregate Functions e e
5.5 Duplicate Insensitive Aggregate Functions
5.5.1 Refinements e
5.6 Practical Matters e
5.6.1 Synchronizing’ Acrossthe Network,
5.6.2 ComplexQueries e e
5.7 Potential Gains e
5.7.1 DuplicateInsensitive e
5.7.2 Duplicate Sensitive e
5.8 Experimental Evaluationo
5.8.1 Workload Generators e
5.8.2 ExperimentalSetup e
583 Results

6 Related Work
6.1 InternetSystems. e e
6.2 Database Systems e e
6.3 Distributed Hash Tables e
6.4 Hybridsof P2PandDB e e
6.5 Multiqguery Optimization e e

7 Conclusion

A UFL Language

B One-Shot Aggregation Algorithms
C Continuous Aggregation Algorithms

Bibliography

30
31

32
32
33
34
39
a7
49
50
50
53

57
57
58
60
61
62
63
65
68
69
70
71
72
72
73
74
74
75
76

83
83
84
85
85
86

88

90

93

95

99

List of Figures

1.1 P2Pfilesharing search application00 . 5
1.2 P2P firewall log aggregation application 6
2.1 Relation fragmentingtechniqueso 9
2.2 Distributed join using relation shipping Lo 10
2.3 Distributed joinusing FetchMatches 10
2.4 Distributed/parallelhashjoin 11
2.5 Example Bamboonetwork L 13
3.1 Generalarchitectureof PIER e 15
3.2 Physical Runtime Environment e 17
3.3 Simulation Environment 19
3.4 Overlay network architecture e 20
3.5 Overlay network message overview i 22
4.1 One-shot aggregation algorithm design dimensions 35
4.2 Total network communication for one-shot aggregatigodgthms 36
4.3 In-bound bandwidth usage for one-shot aggregatiorrigthges 38
4.4 Latency for one-shot aggregation algorithms 38
4.5 Continuous aggregation algorithm design dimensionsevel) 41
4.6 Continuous aggregation algorithm design dimensionsdtitevel) 42
4.7 Continuous aggregation algorithm design dimensionsdti#evel continued) 43
4.8 Total network communication for the routing/timing @insions of continuous aggregation
algorithms L e e 44
4.9 Average latency for the routing/timing dimensions afittouous aggregation algorithms . . 44
4.10 Total network communication for the structure/inwak dimensions of continuous aggre-
gationalgorithms L 45
4.11 Latency for the structure/in-network dimensions aftsmious aggregation algorithms . . . 46
4.12 In-bound network communication for the structuref@work dimensions of continuous ag-
gregationalgorithms 46

4.13 Total network communication for the dynamics dimensitbcontinuous aggregation algorithms 47
4.14 In-bound network communication for the dynamics disi@m of continuous aggregation

algorithms L 48
4.15 Latency for the dynamics dimension of continuous agggien algorithms 48
4.16 Total network communicationfor IPvs. DHT joins 52
4.17 LatencyforIPvs. DHTjoins e e 53
4.18 Total network communication for join strategies L. 54
4.19 Latencyforjoinstrategies. e e 54

4.20 Latency forsymmetrichashjoins. 55

4.21 Total network communication for symmetric hashjoins... 56
5.1 Multi-query aggregation architecture 61
5.2 Duplicate insensitive and sensitive constructions 73
5.3 Linear aggregation algorithms effectiveness and metiith varying potential gains 77
5.4 Linear aggregation algorithms runtime with varyingsiznatrices 77
5.5 Duplicate insensitive aggregation algorithms effexsiess and runtime with varying potential
JAINS . . . e e 79

5.6 Duplicate insensitive aggregation algorithms runtmitd varying sized matrices 80
5.7 Duplicate insensitive aggregation algorithmsinPIER 81

List of Tables

3.1 Virtual Runtime Interface e 15
3.2 Selected methods provided by the overlay wrapper 23
3.3 Operatorsand Implementations e e 28
4.1 Aggregation Function APl 33
5.1 Data for linear aggregation algorithms L. 76
5.2 Data for duplicate insensitive aggregation algorithms 82

Chapter 1

Introduction

At any instant of time there are hundreds of millions of cotepsiconnected to the Internet. Nor-
mally just a small fraction of these machines function asexsrand provide methods for sharing data, while
most of the computers do not expose methods for efficiendyisy their information. This shortcoming lim-
its the types of applications that are developed. Desighatsvant to utilize the huge volume of information
locked inside the end-hosts are often forced to designaléred systems, which are not always suitable.

PIER (which stands for “Peer-to-Peer Information Exchasge Retrieval”) was conceived to be
a framework for applications desiring a pure distributethdecture. PIER enables computation where end-
hosts supply the raw information and perform the calcutatioa completely distributed manner with no
centralized coordination. PIER provides a flexible and feamplatform for application builders using a query
language composed of relational database-style opesasioch as aggregation and joins, along with more
general dataflow operators to support a wide range of apijgitca The query language supports snapshot
and continuous query semantics along with support for sdeeiqueries.

PIER presents a “technology push” toward viable, massigiiyibuted query processing at a sig-
nificantly larger scale than previously demonstrated. Wiitagh, we present an important, viable “application
pull” for massive distribution: the querying of Interneaded datén situ, without the need for database de-
sign, maintenance, or integration. We believe in the neeldfeasibility of such technology in arenas like
network monitoring.

In this thesis we present our design decisions within theggdespace, including our choice to use
relatively new overlay network algorithms. We describegiloie applications that could be built using PIER,
such as a network monitoring tool. The majority of the thésidevoted to describing the architecture and
implementation in detail. Throughout the discussion ofbathms we present experimental results from
detailed simulations.

The primary contribution of this work is to show that the us@w overlay network, in particular
a class of algorithms commonly referred todistributed hash tablesr DHTSs, are an elegant and efficient
tool to enabling scaling the number of participating nodexdmd existingparallel or distributed database

systemsWe show and compare methods for implementing relatioiad jpnd aggregation. Overlay networks
and DHTs will be described in Chapter 2 and the use of DHTs ERPE described in depth in Chapters 3
and 4.

The design of PIER was guided by a number of design princifilesissed next. Afterwards we
briefly describe potential applications that helped guideveork.

1.1 Design Decisions

PIER fully embraces the notion afata independencend extends the idea from its traditional
disk-oriented setting to promising new territory in theatile realm of Internet systems [35]. PIER adopts
a relational data model in which data values are fundamgntadependent of their physical location in
the network. While this approach is well established in tatadase community, it is in stark contrast to
other Internet-based query processing systems, includétigknown systems like DNS [56] and LDAP [37],
filesharing systems like Gnutella and KaZaA, and researstesys like Astrolabe [78] and IrisNet [24] —
all of which use hierarchical networking schemes to achmsadability. Analogous to the early days of
relational databases, PIER may be somewhat less efficiantahcustomized locality-centric solution for
certain constrained workloads. But PIER’s data-indeproéeallows it to achieve reasonable performance
on a far wider set of queries, making it a good choice for easgldpment of new Internet-scale applications
that query distributed information.

1.1.1 Network Scalability, Resilience and Performance

Traditionally, database scalability is measured in terfrdadabase sizes. In the Internet context,
it is also important to take into account the network chamastics and the number of nodes in the system.
PIER achieves scalability by usimtistributed hash tabléDHT) technology (see [41, 63, 66, 68, 74, 87] for
a few representative references). As we discuss in mord detections 2.3 and 3.2, DHTs are overlay
networks providing both location-independent naming agtsvork routing, and they are reused for a host of
purposes in PIER that are typically separate modules inditizaal DBMS. DHTs are extremely scalable,
typically incurring per-operation overheads that growydobarithmically with the number of participating
nodes in the system. They are also designed for resilieapapbde of operating in the presencecbfirnin
the network: frequent node and link failures, and the steadyal and departure of participating nodes in
the network.

Like most Internet applications, we want our system’s dulifg to grow organically with the
degree of deployment; this degree will vary over time, arffédacross applications of the underlying tech-
nology. This means that we must avoid architectures thatireq priori allocation of a data center, and
financial plans to equip and staff such a facility. The neeadofganic scaling is where we intersect with
the current enthusiasm for P2P systems (such as the DHT witécspreviously). P2P systems gain more
capacity as more participants join and contribute.

PIER is designed for the Internet, and assumes that the netwohe key bottleneck. This is
especially important for a P2P environment where most ofhib&ts see bottlenecks at the “last mile” of
DSL and cable links. As discussed in Chapter 4, PIER minisimgwork bandwidth consumption via fairly
traditional bandwidth-reducing algorithms (e.g., Bloarng [53], multi-phase aggregation techniques [71],
etc) and new optimization algorithms. But at a lower and ppgmore fundamental system level, PIER'’s core
design centers around the low-latency processing of lanfigmes of network messages. In some respects
therefore it resembles a router as much as a database system.

1.1.2 Relaxed Consistency

While transactional consistency is a cornerstone of datlianctionality, conventional wisdom
states that ACID transactions severely limit the scalghalhd availability of distributed databases [28]. ACID
transactions are certainly not used in any massively Higd systems on the Internet today. Brewer neatly
captures the issue in his “CAP Conjecture” [25] which stdkbed a distributed data system can enjoy only
two out of three of the following properties: Consistencyaiability, and tolerance of network Partitions.
He notes that distributed databases always choose “C”,aardise “A’ in the face of “P”. By contrast, we
want our system to become part of the “integral fabric” of liternet — thus it must be highly available, and
work on whatever subset of the network is reachable. In tlserad®e of transactional consistency, we will
have to provide best-effort results, and measure them Usasgr notions of correctness, e.g., precision and
recall.

1.1.3 Decoupled Storage

A key decision we made was to decouple storage from the quegipe. We were inspired in this
regard by P2P filesharing applications, which have beenesgéal in adding new value by querying pre-
existing datan situ. This approach is also becoming common in the database caityntudata integration
and stream query processing systems. PIER is designed towithr a variety of storage systems, from
transient storage and data streams (via main memory buftelscally reliable persistent storage (file sys-
tems, embedded databases like BerkeleyDB, JDBC-enabladatzes), to proposed Internet-scale massively
distributed storage systems [19, 45].

In strictly decoupling storage from the query engine, wesgip the ability to reliably store system
metadata. As a result, PIER has metadata catalogf the sort found in a traditional DBMS. This has
significant ramifications on many parts of the system, suauasy optimization and verifying query syntax
(Section 3.3).

1.1.4 Standard Schemas via Grassroots Software

An additional challenge to the use of databases — or evectgtad data wrappers — is the need for
thousands of users to designd integratetheir disparate schemas. These are daunting semanticcprspl

and could easily prevent average users from adopting dsgafeghnology. Fortunately, there is a quite
natural pathway for structured queries to “infect” Intdrtezhnology: the information produced by popular
software. Local network monitoring tools like Snort [67BIT [1] and even tcpdump provide ready-made
“schemas”, and — by nature of being relatively widespreark-da facto standards. Moreover, thousands or
millions of users deploy copies of the same application a&mndes software packages, and one might expect
that such software will become increasingly open aboutnteqpits properties. The ability to stitch local
analysis tools and reporting mechanisms into a shared lgtodoaitoring facility is both semantically feasible
and extremely desirable.

Of course we do not suggest that research on widespreadt(ppeer) schema design and inte-
gration is incompatible with our research agenda; on théraon solutions to these challenges only increase
the potential impact of our work. However, we do argue thagsively distributed database research can and
should proceed without waiting for breakthroughs on theeawdfront.

1.1.5 Software Engineering

From day one, PIER has targeted a platform of many thousdnusdes on a wide-area network.
Development and testing of such a massively distributeteryss hard to do in the lab. In order to make
this possiblenative simulatioris a key requirement of the system design. By “native” sirtiofawe mean
a runtime harness that emulates the network and multiplenimes, but otherwise exercises the standard
system code.

The trickiest challenges in debugging massively distedigystems involve the code that deals with
distribution and parallelism, particularly the handliffighode failures and the logic surrounding the ordering
and timing of message arrivals. These issues tend to be @edytb reason about, and are also difficult to
test robustly in simulation. As a result, we attempted toa@salate the distribution and parallelism features
within as few modules as possible. In PIER, this logic residegely within the DHT code. The relational
model helps here: while subtle network timing issues caecatihe ordering of tuples in the dataflow, this
has no effect on query answers or operator logic (PIER usésstributed sort-based algorithms).

1.2 Application Space

PIER is targeted at applications that run on many thousahelsdusers’ nodes where centraliza-
tion is undesirable or infeasible. To date, our work has ligennded in two specific application classes: file
sharing and network monitoring.

1.2.1 P2P File Sharing

File sharing was one of the first popular P2P applicationdaba deployment and therefore it
serves as our baseline for scalability. It is characterined number of features: a simple schema (keywords
and fileIDs), a constrained query workload (Boolean keyveeatch), data that is stored without any inherent

100
90
80
70
60
50
40
30
20 {f

10

Percentage of Queries

i PIER (Rare Items)
! Gnutella (All Queries) --------
IGnutlella (Il?are Iltems) .

0 20 40 60 80 100 120 140 160 180 200
First Result Latency (sec)

Figure 1.1: CDF of latency for receipt of an answer from PIEBER &nutella, over real user queries intercepted
from the Gnutella network. PIER was measured on 50 Planatbdbs worldwide, over a challenging subset
of the queries: those that used “rare” keywords used infatjy in the past. As a baseline, the CDF for

Gnutella is plotted both for the rare-query subset, andHerdomplete query workload (both popular and

rare queries). Details appear in [49].

locality, loose query semantics (resolved by users),iveligthigh churn, no administration, and extreme ease
of use. In order to test PIER, we implemented a filesharingchesngine using PIER and integrated it into the
existing Gnutella filesharing network, to yield a hybrid isdeinfrastructure that uses the Gnutella protocol
to find widely replicated nearby items, and the PIER engirfextbrare items across the global network. As
we describe in a paper on the topic [49], we deployed thisidybfrastructure on 50 nodes worldwide in the
PlanetLab testbed [62], and ran it over real Gnutella qsenie data. Our hybrid infrastructure outperformed
native Gnutella in both recall and performance. As one exawfithe results from that work, the PIER-based
hybrid system reduced the number of Gnutella queries tieatve no results by 18%, with significantly lower
answer latency. Figure 1.1 presents a representativerpgfwe graph from that study showing significant

decreases in latency.

1.2.2 Endpoint Network Monitoring

The Internet today is viewed by many as a black box. Packetiatt originate from one host
and hopefully arrive at their destination shortly thereaftHowever, when data is not flowing as expected,
even experienced users are often left clueless as to why caication is failing. Furthermore, since the
Internet, by definition, is the federation of thousands oéken networks and a few large networks, there is
no single authority who can provide explanations for protde There is no single entity who has access to
every parameter/setting, current status, or more brohdlglobal state of the Internet.

We believe it is possible to analyze partial network statenfmany endpoints and form a more

2 http:/iphi.berkeley.intel-research, net/swilhttackHistogram,swf - Microsoft Internet Explorer.
File Edit View Faworites Tools Help i

Qui - @ [¥ B @ Osewch Sframoites @mess & R~ [H[J) X B

kolay el rasearch, kHstograrm.swi 8w &

6592

Event Frequency

ZOA024 19200253 04ZOTATAD 1718404218 S008I WELTET 19BESAD43T 19BTINSLAN TETOZN 611694517

Top 10 attackers

|El oo @ Tntermet

Figure 1.2: The top 10 sources of firewall log events as repoloty 350 PlanetLab nodes running on 5
continents.

complete picture of the current overall state. As more hostgribute, the picture becomes more complete
and accurate. Given that network status information isadlyelecentralized both in location and administra-
tion, a decentralized query engine would be desirable.

Specifically, end-hosts have a wealth of network data wahdard schemas: packet traces and fire-
wall logs are two examples. Endpoint network monitoringrdties data is an important emerging application
space, with a constrained query workload (typically disttéd aggregation queries with few if any joins),
streaming data located at both sources and destinatiomaffi€,tand relatively high churn. Approximate
guery answers are sufficient, and online aggregation [3@&s$érable.

Figure 1.2 shows a prototype applet we built, which execatB$ER query running over firewall
logs on 350 PlanetLab nodes worldwide. The query reportiRtlagldresses of the top ten sources of firewall
events across all nodes. Recent forensic studies of (wasedpfirewall logs suggest that the top few sources
of firewall events generate a large fraction of total unwdmiteffic [85]. This PIER query illustrates the same
result in real time, and could be used to automatically patame packet filters in a firewall.

Chapter 2

Background

PIER builds on a number of classic and modern topics in baifbdase and network research. This
chapter provides an overview of a number of these backgroandepts including distributed and parallel

databases, parallel query processing methods, and overtaprks.

2.1 Distributed and Parallel Databases

Distributed databases and parallel databases are twedeatas of data management work. In
both cases one of the primary design goals is for the systdogteally appear to the user as a centralized
system. A user submits a query without knowledge of wherddteis located. The database system provides
the complete answer using data present throughout the eriwork of participating nodes as if all the data
was stored on a single node. This is a natural extension afitkeoriented data independence feature of
single node database systems. As with a centralized datalgatem, the distributed/parallel database will
optimize the query to find an efficient plan of accessing tlogiired data and provide the same transactional
support (ACID) found in a centralized system.

The distinction between a distributed and parallel datalim®ften based on the level of auton-
omy and type of network connecting the participating nodistributed databases are loosely coordinated
autonomous systems (possibly with different administsgtoften connected by wide-area networks. Par-
allel databases are tightly coupled nodes under the sammiathative control connected by a high-speed
local-area network. In a parallel database there is oftemoadinator node, where all queries are submit-
ted, optimized, and then distributed to the computationesddr processing. However, with a distributed
database queries can submitted to any node, which acts eedhginator for that query and has the role of
computation node for other queries. Distributed systemsofgen answer some queries when disconnected
from the network if all the required data is available frora tonnected nodes.

In both distributed and parallel databases the data is feaggad among the nodes. For a given set
of relations in a database, there are three means of fragmgent

e Relations: Each node patrticipating in the system is assigned a subgeeaklations. The entire
relation (all tuples and all attributes) is stored on thegassd node. For example, node 1 may store
relationsRk andS and node 2 stores relatiofisandU .

e Vertical Partitioning: A relation is split into one or more partitions, such thatlepartition contains
a subset of attributes (possibly overlapping) for eachetipthe relation. Each partition at a minimum
contains the primary key attribute(s). This enables an-gmnion the primary key attribute(s) over all
partitions to form the complete original relation. For exde) relationR with primary keyR 4 can be
partitioned in three partition§,R4, R, Rc}, {Ra, Rp, Rg},and{Ra, Rg, Rg}.

e Horizontal Partitioning: A relation is split into one or more partitions, such thattepartition con-
tains a subset of the tuples. This method is sometimes addleldistering. Each tuple in a partition is
complete with all attributes. The complete original redatcan be formed by taking a union of each
partition. Horizontal partitioning can be achieved usingianber of methods:

— Round-Robin Tuples are evenly distributed among the partitions. Tupleseffectively ran-
domly distributed. This method supports full relation ssafficiently, but is not appropriate for
index or range queries since tuples are not stored basedusn Vabcating specific tuples based

on value requires examining each and every tuple.

— Hashing Tuples are hashed on one or more attributes (for examplertimagy key). Given a
sufficiently good hash function, tuples are evenly distiélou This method works well for full
relation scans and index scans on the hashing attributess bat appropriate for range queries
since tuples are not ordered.

— RangeTuples are divided into groups defined by non-overlappimyea of one or more at-
tributes. While this method works well for queries with picades over the range attribute(s),
if the ranges are not well chosen then the workload may nofgolly distributed among the
participating nodes.

— Arbitrary Predicates A generalization of the range partitioning method, tuplesdivided into
groups based an arbitrary predicates (as opposed to jugt mrdicates). To be a correct parti-
tioning, each tuple must match at least one predicate. liésugre allowed to match multiple pred-
icates the tuple is effectively replicated and special caust to be taken to always update/delete
all copies of the tuple. This method works well when the piariing predicates are commonly
found in the queries. However, this method is also susdegtibuneven data distribution.

Figure 2.1 illustrates vertical and horizontal partitiogi A combination of multiple of fragmenta-
tion techniques can be used simultaneously. Each fragmesit Ine allocated to one or more nodes. Allo-
cating the same fragment to more than one node is replicdtiothermore, replication can also occur if the
fragments are overlapping. The decision on which fragntemtanethods to use and an allocation strategy
is based on the data and query workload. For example, if anlyesattributes for a particular relation are

Relation R

PKey Attrl Attr2 ... AttrN

1 9 .. e
7 .. a
A

5 .. 0

B ow
- NszO0
w

o

Horizontal
Partitioning

Relation R1

PKey

>

ttrl Attr2 ... AttrN

.. e
oa

1
3
4 o

N = O
w | ©

Relation R2

PKey Attrl Attr2 ... AttrN

Relation R1

Relation R2

» PKey Attrl
1 C

2 M
3 W
4 Z
5 T

Vertical
Partitioning

PKey Attr2 ... AttrN
1 -

o~ w
0w N e o
o — o c @

Horizontal & Vertical
‘ Partitioning

Relation R11

Relation R22

PKey Attrl

PKey Attr2 ... AttrN

.8
.oa
e

> w
o ~ ©

Relation R12

Relation R22

PKey Attrl

PKey Attr2 ... AttrN

2 M 1..u 2 M 21 ..u
5 T 5 .0 5 t 5 5 .0

Figure 2.1: Relation R (top left) can be partitioned horiatly (bottom left), partitioned vertically (top right)
or partitioned both horizontally and vertically (bottorght).

gueried at one site, then a vertical partition containirggthattributes can be allocated to the node at that site.
Traditionally a highly skilled database administrator abes the allocation scheme.

2.2 Distributed Query Processing Methods

There are two primary forms of distributed processing irabdase systems: pipelined and parti-
tioned. Pipeline parallelism divides a query plan into Eof operators. Each block is then assigned to a
node for processing. The blocks are connected via specahtys that transfer tuples from one node to
another. On the other hand, partitioned parallelism iseaed by dividing the data into disjoint sets using
horizontal partitioning (see Section 2.1). Each node etescine entire query plan over a subset of the data.
At various points in the query plan, usually before a join ggegation, special operators may move data
between nodes such that complete join or aggregation ksigketips are placed on the same node.

The majority of the literature for distributed query prosieg focuses on methods for joins. The
early systems considered two methods: shipping entiréoaand “fetching “ tuples for index joins. These
methods are best suited to small networks where there arpdeticipating nodes. For example, consider
a join where the one relatior?, is stored at nodé and the other relation$, is stored at node. Two
possible query plans include having nddsend a copy of relatio® to node2 where the join is performed,
or vice-versa having nodesend a copy of relatioff to nodel. Figure 2.2 illustrates the first scenario.

The Fetch Matches method [53] is a specialization of thetioglashipping method. Instead of
sending the entire relation from one node to another, the ndth the R relation (also called the “outer
relation”) sends a (fetch) request for some tuples to theerwith the S relation (also called the “inner”
relation). The requested tuples are then forwarded to theesting node. Unlike the shipping the entire
table, if there are tuples in the relation that are not needed for the join they will not be serbss the
network. Figure 2.3 illustrates an example fetch matchesyqu

Relation Relation
R S
TS
Ship relation S Relation
from node 2 to « S
Node 1

Execute join
on node 1

Figure 2.2: Relatior is stored on node 1 and relati¢his stored on node 2. To compute the join node 2

sends a copy aof to node 1.

Node 1 issues
Fetch request
Node 2 sends
just the subset
of matching S
tuples to node 1

Execute join
on node 1

Relation Relation

N

Relatio

Request for S

Relatio

where attrl = 5»

Figure 2.3: Fetch Matches: Relatidhis stored on node 1 and relatidhis stored on node 2. After scanning
R, node 1 requestS tuples where attribute c is equal to 'blue’. Node 2 sendsupées to 1 where the join
is performed.

11

T ™ ™
Relations R and Relation Relation Relation Relation Relation Relation
S partitioned on R S
R.k and S.k
— (]
Tuples Tuples
— | —
Send tuples from from R Topee = fomR
R and S based
I ———
on hash of R.a Tuples E il :: it :: Tuples __ Tuples
and S.b froms g£zzz cozo froms mmmm flomS
Execute join
on all nodes

Figure 2.4: Hash Join: Relatioris (and.S) are horizontally partitioned by hashing attributek (and S.k).
To compute the join oik.a = S.b, all nodes scan their partitions &f (and.S) and send a copy of the tuple
based to another node based on the hagh.@f{andsS.b).

Both of these methods were designed for systems where ealitions are stored at individual
nodes as opposed to using horizontal partitions. Theseaudgthiork well with pipelined parallelism.

Parallel query processing systems (such as the Gamma sj@Brbuild on the relation-shipping
concept. Since parallel systems primarily use horizongatifoning, they dynamically create and move
fragments instead of entire relations to execute joins guemations. A parallel hash join is executed by
redistributing tuples among the nodes using a hash functiothe join attribute(s). Each hash bucket is
assigned to a node using a mapping function known by all nddese all the source tuples are hashed into
their proper buckets, each node can compute the join or ggtiod over the hash bucket locally. A three-
node example is shown in Figure 2.4. This is a straightfotveaitension of the centralized hash join, with
the exception that individual hash buckets maybe locatedifterent nodes. The use of hashing instead of
range or arbitrary predicates was chosen to help achieveeandistribution of tuples and work.

2.3 Overlay Networks

A network can be broadly defined as the collection of commativa links between a set of nodes,
along with the addressing and routing scheme used. A smiadir&¢t network may contain two or more
nodes connected to a switch. Each node on this network hasvankenterface card with a built-in Ethernet
address (also called the MAC address). The routing is hdrmighe switch which delivers each packet of
data to appropriate node based on the Ethernet address.

An overlay network is network that is built on top of anothetwork. It can provide new addressing
and routing protocols with the goal of providing a new sesviot achieved using the lower network(s). In

12

essence, overlay networks are a means of inserting a layediogction above the network.

The Internet (and the IP protocol) can be considered anayedtwork. The Internet allows for
communication across all participating networks. Nodetha Internet are assigned addresses and use a
variety of routing protocols. However, these addresseganticols work on top of the native schemes used
by the underlying network.

Overlay networks can also be used to provide content-basgthg. In content-based routing the
source specifies the destination based on the value of theitdatsending or retrieving. The destination
node is then determined on the fly by the overlay network. Qwee as nodes join and leave the system
the destination node for a particular value may change. Phegrbtocol requires the source to specify the
destination node directly, thus forcing the sender to deites the exact destination node.

When evaluating different content-based routing algar&hhe key metrics include latency, con-
sistency and robustness. Many implementations use mytirduting, which can be much slower than direct
routing, increasing the latency of a message. Reducinguh®ar of hops or reducing the latency of each
hop can improve the overall latency. Consistency is the oreasf whether different messages (from the
same or different source nodes) are routed to the same astimode. Many content-based routing al-
gorithms claim “eventual consistency” which means thahd hetwork remains stable for some period of
time the routing becomes completely consistent. Finalbusthess measures the system'’s ability to remain
(mostly) consistent despite nodes joining, leaving and/agk interruptions.

There have been a large number of content-based routingthlgs introduced. Our work primar-
ily used one, Bamboo [66] which we briefly describe below.

2.3.1 Bamboo

Bamboo is a content-based overlay router loosely based stnyf&8]. Bamboo was engineered
to be extremely robust to node failures and network disaugti In particular the design of Bamboo is based
on periodic (instead of reactive) recovery from failureatetul calculation of message timeouts, and uses
proximity neighbor selection.

Bamboo uses a 160-bit flat identifier space grouped inthgits of log.b bits wherex = 259

logab”
The parameteb is commonly referred to as the base, with 16 (hex digits) asnancon value. The space

can be visualized as circle where the identifier wraps ar@augé’. Figure 2.5 shows an example Bamboo
network.

Each node is randomly assigned an identifier (sometimesasie ¢f the node’s IP address is used).
Since the space of identifiers is much larger than the nunthesdes, there are many identifiers that do not
map directly to a node. Instead, identifiers map to the nodeemically closest (with wraparound at 0 and
2160 Each node maintains two sets of neighbors or linksiuding tableand aleaf set

The leaf set reliably maintains a set of links to other nothes are “nearby” in the circle, the
nodes that immediately precede and follow the node in thetifir space. The leaf set may only contain
active/live nodes, since the leaf set is required for com@mating.

13

Routing Table
, * j 5%
Node 52 |-5-1----=--1-3s3e o

Details 10 - -
2 1 Node 2F: -SELF-
i
Leaf Table[| : | = @ -
5 1 -SELF- 1 -SELF-
Node 2F 6 1 Node 681 ——-
Node 50 7 | Node 7E: --—-
Node 5F 8 I ——— 1 -
Node 68 9 E Node 945 —
Leaf Table Link g | Node BC: ___
C i+ Node C91 ——-
D i Node DO: ——-
Routing Table Linf £ | Node EO! -
---- Fi — 1 -

Figure 2.5: An example Bamboo network with a 8-bit, base &@iifier space. Leaf (solid lines) and routing
(dashed lines) tables/links for Node 52 are shown.

In addition to the leaf set, there is also a routing table. damh prefix of the node’s identifier, the
routing table contains links fdr nodes such that each of thas@odes have the same prefix and different
digits for the digit following the prefix. The routing tablg iised to reduce the number of hops when routing
a message. Bamboo is less aggressive in maintaining orlje aides in the routing table than in the leaf
set since it is only used for efficiency. This means Bamboo ame@gk the node for liveliness less frequently
than a leaf set node, saving resources.

The combination of the leaf set with “short distance” linksthe identifier space) and the routing
table with “long distance” links allows Bamboo to efficigntieliably and consistently route to any identifier.
In the worst case, the leaf set is sufficient (although natiefit) for routing a message. Further details about
Bamboo are beyond the scope of this dissertation and carube fo [66].

14

Chapter 3

Architecture

In this chapter we discuss the architecture of PIER. FigutesBows an overview of the architec-
ture. The architecture is composed of three main parts:xéeution environment (not shown in the figure),
the distributed hash table (DHT), and the query procesdwe.query processor coordinates the execution of
local dataflows on all participating nodes while the DHT esutlata between nodes. The execution environ-
ment provides a event-based style of multiprogramming tdbkneasy simulation and deployment.

In the following sections we discuss each of the main comptsrstarting from the foundation and

working our way up to the query processor.

3.1 Execution Environment

Like any serious query engine, PIER is designed to achievgladegree of multiprogramming
across many I/O-bound activities. This permits the queogessor to issue many simultaneous requests for
data without waiting for a request to complete before isgtive next request. This can significantly reduce
latency and this strategy is employed in all query processdtr also needs to support native simulation
(Section 1.1.5). These requirements led us to a design dealin two main components: a narraivtual
Runtime Interfaceand arevent-basedtyle of multiprogramming that makes minimal use of threads

3.1.1 Virtual Runtime Interface

The lowest layer of PIER presents a simplgual Runtime Interfac€VRI) that encapsulates the
basic execution platform. The VRI can be bound to either #a-world Physical Runtime Environment
(Section 3.1.3) or to &imulation EnvironmentSection 3.1.4). The VRI is composed of interfaces to the
clock and timers, to long running computation tasks, to nekprotocols, and to the internal PIER scheduler
that dispatches timer, computation, and network eventephesentative set of the methods provided by the
VRI are shown in Table 3.1.

15

User Application

Query Results

Query Processor Query Processor

-~ M

Running Dataflows Running Dataflows
/Queries, Data, \
DHT DHT control traffic DHT

Figure 3.1: The general architecture of PIER. A query is dttbohto query processor by a user application
on any node. The query is executed on multiple nodes usingltieas the primary method communication.
Query results can be sent directly to the user applicati@n the network without going through the DHT.

Clock and Timer Scheduler
long getCurrent Time()

void schedule Event(delay, callbackData, callbackClient)
| void handle Timer(callbackData) |

Computation Scheduler
| void scheduleComputation(data, callbackClient, computationFunctioh)

| void handleComputation(data, result) |

UDP Network Protocol
void listen(port, callbackClient)

void release(port)

void send(source, destination, payload, callbackData, callbaiek@)
void handleUDPAck(callbackData, success)

void handleUDP(source, payload)

TCP Network Protocol
void listen(port, callbackClient)

void release(port)

TCPConnectioronnect(source, destination, callbackClient)
disconnect(TCPConnection)

int read (byteArray)

int write(byteArray)

void handleTCPData(TCPConnection)

void handleTCPNew(TCPConnection)

void handleTCPError(TCPConnection)

Table 3.1: Selected methods in the VRI.

16

3.1.2 Events and Handlers

Multiprogramming in PIER is achieved via an event-basedmmming model running in a single
thread. This is common in routers and network-bound apidica, where most computation is triggered
by the arrival of a message, or by tasks that are specificaltyepl by local code. Most events in PIER are
processed by a single thread with no preemption. A spec@iasaf eventg,omputation eventare processed
in separate threads.

The single-threaded, event-based approach has a numbenefits for our purposes. Most im-
portantly, it easily supports our goal of native simulati@iscrete-event simulation is the standard way to
simulate multiple networked machines on a single node [B@]adopting an event-based model at the core
of our system, we are able to opaquely reuse most of the protpgic whether in theSimulation Envi-
ronmentor in thePhysical Runtime EnvironmenThe uniformity of simulation and runtime code is a key
design feature of PIER that has enormously improved ouitabil debug the system and to experiment with
scalability. Moreover, we found that Java did not handlergdanumber of threads efficientlyFinally, as a
matter of taste we found it easier to code using only one thimaevent handling.

As a consequence of having only a single main thread, eactt kaadler in the system must com-
plete relatively quickly compared to the inter-arrivaleaf new events. In practice this means that handlers
cannot make synchronous calls to potentially blockingirmast such as network and disk 1/O. Instead, the
system must utilize asynchronous (a.ksplit-phaseor non-blocking I/O, registeringcallbackroutines that
handle notifications that the operation is compgle®@imilarly, any long chunk of CPU-intensive code must
yield the processor after some time, by scheduling its owrticoation as a timer event, or be scheduled as
computation event. A handler must manage its own state ohehp, because the program stack is cleared
after each event yields back to the scheduler.

Computation events are relatively long running tasks (#rigan a few milliseconds) that do not
support preemption. When the computation is complete antésénserted into main queue to handle the
result. Special handling of these tasks is important fohltlo¢ runtime and simulation environments. Since
these tasks do not complete relatively fast it is importaradcount for the running time in simulation. In
runtime long running tasks on the main queue may signifigatglay execution other events. As of now,
only the multi-query optimization algorithms (describeddhapter 5) require the use of computation events.

All events originate with the expiration of a timer, with tbempletion of an 1/O operation or at the
completion of computation event.

LWe do not take a stand on whether scalability in the numbeiregtls is a fundamental limit [81] or not [79]. We simply neédo
work around Java’s current limitations in our own system.

2At the time of PIER’s design Java did not yet have adequatpatifor non-blocking file and JDBC I/O operations. For scasa
where these “devices” are used as data sources, we spawntameed that blocks on the 1/O call and then enqueues the peveeat
on the Main Scheduler’s event priority queue when the calbisplete.

17

Program

;J“f_‘ 2 Timer
Query Overlay s Event
Processor Network -
Network
; Event
Virtual
Runtime
Interface ‘ :

&3 \ Secondary Queue

10 Lz
mum mﬂ«zm o K [~ ~ ~
R Y o AE e,
A L»—‘
LfJ Marshal ~ ——»

@ Unmarshal -
Main Scheduler Clock Network

Figure 3.2: Physical Runtime Environment - A single pripgueue in the Main Scheduler stores all events
waiting to be handled. Events are enqueued either by seititiger or through the arrival of a network
message. Out-bound network messages are enqueued fohasymges processing. A second /O thread is
responsible for dequeuing and marshaling the messageglaridg them on the network. The 1/O thread
also receives raw network messages, unmarshals the conéet places the resulting event in the Main
Scheduler’s queue.

3.1.3 Physical Runtime Environment

The Physical Runtime Environment consists of the standaates clock, a priority queue of events
in the Main Scheduleran asynchronous I/O thread, and a set of IP-based netvgolikiaries (Figure 3.2).
While the clock and scheduler are fairly simple, the netwayhibraries merit an overview.

UDP is the primary transport protocol used by PIER, mainlg ds low cost (in latency and state
overhead) relative to TCP sessions. However, UDP does ppbsureliable delivery or congestion control.
To overcome these limitations, we utilize the UdpCC libri§], which provides for acknowledgments and
TCP-style congestion control. Although UdpCC tracks eaelssage and provides for reliable delivery (or
notifies the sender on failure), it does not guarantee iromessage delivery. TCP sessions are primarily
used for communication with user clients and for some typetata sources. TCP facilitates compatibility
with standard clients and has fewer problems passing thrbreyvalls and NATSs.

The physical runtime environment uses at least two thre@ae thread for processing the main
event queue and a second thread dedicated to I/O handlirepakate thread for I/0 is used to ensure that the
acknowledgments used in UdpCC are sent in a timely fashiatdit®dnal threads are used for synchronous
I/O data sources and for each computation event.

18

3.1.4 Simulation Environment

The Simulation Environment is capable of simulating thawiseof virtual nodes on a single physi-
cal machine, providing each node with its own independegit#d clock and network interface (Figure 3.3).
The Main Scheduler for the simulator is designed to cootdittze discrete-event simulation by demultiplex-
ing events across multiple logical nodes. The program codedch node remains the same in the Simulation
Environment as in the Physical Runtime Environment.

Computation events are handled like normal events, exteptvall-clock time to perform the
execution is recorded. After applying an optional fudgetdamultiplier to the observed execution time, the
result handler for the computation is scheduled to be cafiede simulator after the calculated delay. The
fudge factor can be used to adjust for nodes that have sloRersGhan the machine being used to run the
simulation. Additionally, the fudge factor can be used tpragimate CPU sharing that is likely to occur in
real environments when nodes are simultaneously usedHer applications.

The network is simulated at message-level granularityeratiian packet-level for efficiency. In
other words, each simulated “packet” contains an entirdicgijpn message and may be arbitrarily large.
By avoiding the need to fragment messages into multiple gtackhe simulator has fewer units of data to
simulate. Message-level simulation is an accurate appraton of a real network as long as messages are
relatively close in size to the maximum packet size on therreavork (usually 1500 bytes on the Internet).
Most messages in PIER are under 2KB.

Our simulator includes support for three standard netwoplology types (star, transit-stub, and
the King model [32]) and three congestion models (no comyestair queuing, and FIFO queuing). The
simulator does not currently simulate network loss (all sages are delivered), but it is capable of simulating
complete node failures.

3.2 Distributed Hash Tables (DHTS)

Internet-scale systems like PIER require robust commtinicaubstrates that keep track of the
nodes currently participating in the system, and relialigd traffic between the participants as nodes join
and leave. One approach to this problem uses a central serm@intain a directory of all the participants
and their direct IP addresses (the original “Napster” m¢@é], also used in PeerDB [59]). However, this
solution requires an expensive, well-administered, lyighvailable central server, placing control of (and
liability for) the system in the hands of the organizatioattadministers that central server.

Instead of a central server, PIER uses a decentralizedchgpiafirastructure, provided by an overlay
network. DHTs are a popular class of overlay networks thavide location independence by assigning
every node and object an identifier in an abstract identifjace. The DHT maintains a dynamic mapping
from the abstract identifier space to actual nodes in thesysand with high probability provides consistent
routing such that at any given time any node that attemptsgolve an identifier to a node will discover the
same mapping.

19

.
o
-

Program

Query Overlay
Processor Network

Virtual L
Runtime / ‘ |H
Interface : ;

Noqe m“”f_“z Y
Demultiplexer 987 . 53 Network Topology
Model Congestion
@*@@){‘@ Model
R @J
Main Scheduler Clock Network

Figure 3.3: Simulation Environment - The simulator uses btaén Scheduler and priority queue for all
nodes. Simulated events are annotated with virtual noddifaes that are used to demultiplex the events
to appropriate instances of the Program objects. Out-boetdork messages are handled by the network
model, which uses a topology and congestion model to cakulben the network event should be executed
by the program. Some congestion models may reschedule atietke queue if another out-bound message
later affects the calculation.

While the core of the DHT is simply a router for the abstraetntifier space, it is straightforward
to include a hash-table like interface where the hash backet distributed throughout the network. The
DHT in PIER provides a hash table’s traditiongft and put methods as well as additional object access
and maintenance methods. For modularity, the DHT in PIERvigleld into three components: tiheuter, an
object manageand aDHT wrapperthat implements the basic APIl. The components are showmgiré&i3.4.

The router contains the peer to peer overlay network roygiotpcol (introduced in Section 2.3) of
which there are many options. We currently use Bamboo [688¢dbed in Section 2.3.1), although PIER is
agnostic to the actual algorithm, and used other DHTs inetu@AN [63] and Chord [74] in various stages
of its development. We chose Bamboo since it is implementelhva, the implementation was robust, and
was developed locally.

In the following sections we discuss the naming of objectthin DHT, the use of soft-state for

reliability, and a discussion of the API and its implemeiotat

3.2.1 Naming

Within the DHT every object has amuting identifierand astorage name In many cases the
storage name is used to compute the routing identifier, lainite cases they may be different. The routing
identifier is used to determine which node in the network &hde responsible for the object, while the

20

Query Processor
A

Wrapper < "@
N/

) Object
Routing Manager

Obj.

A

Overlay Network

A

&

Figure 3.4: The overlay network is composed of the routejealmanager and the DHT wrapper. Both
the router and DHT wrapper exchange messages with otheisnaalehe network. The query processor
only interacts with the DHT wrapper, which in turn managesdhoreography between the router and object
manager to fulfill the request.

storage name is used by the query processor to distingujshtslin requests.

The storage name of each object is composed of three partsmaspace, partitioning key, and
suffix. All three parts are chosen by the application tha¢githe object to the DHT for handling. The query
processor uses the namespace to represent a table namenantaef a partial result set in a query. The
partitioning key is generated from one or more relationg@llaites used to index the tuple in the DHT (the
hashing attributes). Suffixes are tuple “uniquifiers”, aoat random to minimize the chance of a spurious
name collision within a table. Any object with same namespagatrtitioning key and suffix is considered the
same object and previous instances of the object are repleite the new object.

By default, the DHT computes an object’s routing identifising the namespace and partitioning
key; the suffix is only used to differentiate objects that dootherwise share the same storage name. In
our system the SHA1 hash of the namespace string concatlendkea separator (a period) and the string
representation of the partitioning key is used as the defauting identifier.

For some queries, the routing identifier may be pre-specifted example in aggregation queries,
the node issuing the queries may want to be the root of theeggtjon tree (details described in Chapter 4)
and provides it own ID as the root routing identifier. Datatderthe root via the DHT sill has a normal
storage name (namespace, partitioning key and suffix)hieugtorage name is not used for routing decisions.

When data is passed from the DHT to the query processor itigtated with the storage name, but
not the routing identifier. Therefore the default operatibthe DHT completely masks the routing identifiers
from the query processor. Only in special cases does the guecessor provide a custom routing identifier
to the DHT.

21

3.2.2 Routing

One of the key features of DHTs is their ability to handle chiarthe set of member nodes. Instead
of a centralized directory of nodes in the system, each nedpsktrack of a selected set of “neighbors”, and
this neighbor table must be continually updated to be ctergisvith the actual membership in the network.
To keep this overhead low, most DHTs are designed so thatrestdmaintains only a few neighbors, thus
reducing the volume of updates. As a consequence, any goe® can only route directly to a handful of
other nodes. To reach arbitrary nodes, multi-hop routingse.

In multi-hop routing, each node in the DHT may be requirecbtoverd messages for other nodes.
Forwarding entails deciding the next hop for the messagedas its destination identifier. Most DHT
algorithms require that the message makes “forward pregjaseach hop to prevent routing cycles. The
definition of “forward progress” is a key differentiator angpthe various DHT designs; a full discussion is
beyond the scope of this thesis, but is well-treated in [31].

A useful side effect of multi-hop routing is the ability of des along the forwarding path to inter-
cept messages before forwarding them to the next hop. Vipealifrom the DHT, the query processor can
inspect, modify or even drop a message. Upcalls play an itaporole in various aspects of efficient query
processing, as we will discuss in Chapter 4.

3.2.3 Soft State

Recall that PIER does not support persistent storage;adstelaces the burden of ensuring per-
sistence on the originator of an object (fablishe) using soft state a key design principle in Internet
systems [14].

In soft state, a node stores each item for a relatively simetperiod, the object'soft-state lifetime
after which the item is discarded. If the publisher wishekdep an object in the system for longer, it must
periodicallyrenewthe object, to extend its lifetime.

If a DHT node fails, any objects stored at that node will be ksd no longer available to the
system. When the publisher attempts to renew the objechuting identifier will be mapped to a different
node than before, which will not recognize the storage ifientcausing the renewal to fail, and the publisher
must publish the item again, thereby making it availablééosystem again. Soft-state also has the side-effect
of being a natural garbage collector for data. If the pulglighils, any objects it published will eventually be
discarded.

The choice of a soft-state lifetime is given to the publiskéth the system enforcing a maximum
lifetime. Shorter lifetimes require more work by the pubgs and the system to maintain persistence, but
increase object availability, since failures are deteetsdlfixed by the publisher faster. Longer lifetimes are
less work for the publisher but failures can go undetecteddioger. The maximum lifetime protects the
system from having to expend resources storing an objecsevhoblisher failed long ago.

1
=i

[
==

22

= C_FD
Source Destination
forward forward
pUt/ Lookup ——»%7—%—»
| Response
renew
upcall > upcall -
send Cob. | wE | H oD
forward forward
Lookup ——b%i—%%—»
- Response
get
Request -
b

Figure 3.5:put andrencw perform a lookup to find the object’s identifier-to-IP mappimfter which they

can directly forward the object to the destinationd is very similar to aput, except the object is routed

to the destination in a single call. Whilend uses fewer network messages, each message is larger since it
includes the objectget is done via a lookup followed by a request message and finag@onse including

the object(s) requested.

3.2.4 Implementation

As listed in Table 3.2 the DHT supports a collection of int@de and intra-node operations imple-
mented by the overlay wrapper. The hash table functionialipyovided by a pair of asynchronous inter-node
methodsput andget. Both are two-phase operations: first a lookup is perforroatktermine the identifier-
to-IP address mapping, then a direct point-to-point IP camication is used to perform the operation. The
lookup operation involves routing a small message via thleglay router. The destination node sends a direct
IP response to the sender which can now send the full messdlge tlestination node. When thet oper-
ation completes, the DHT passes the data to the query pardbssugh thehandleGet callback. The API
also supports a lightweight variant pfit called renew to renew an object’s soft-state lifetime. Theew
method can only succeed if the item is already at the degimabde; otherwise, theenew will fail and a
put must be performed. Thend method is similar to aut, except upcalls are provided at each node along
the path to the destination. Figure 3.5 illustrates how edithe operations is performed.

The four inter-node calls each have three variants. Theautefariant, the application supplies just
the storage identifier and the DHT computes the locationtifien The second variant allows the application
to supply both the storage identifier and routing identifiénally, in some cases the query processor does

23

Inter-Node Operations
void get([locationID — remoteAddress], namespace, key, callbdiek®)
void put([location]D — remoteAddress], namespace, key, suffixeobjlifetime)
void send([locationIlD — remoteAddress], namespace, key, suffixeobjlifetime)
void renew([locationlD — remoteAddress], namespace, key, suffigtiihe)

void handleGet(namespace, key, objects[]) |

Intra-Node Operations
void localScan(callbackClient)
void newData(callbackClient)
void upcall(callbackClient)
void handleLScan(namespace, key, object)
void handleNewData(namespace, key, object)
continueRoutindrandle Upcall(namespace, key, object, midway, locallySent)

Table 3.2: Selected methods provided by the overlay wrapper

not want to specify a routing identifier, but instead has iheiteed the IP address of the remote node through
another means (for instance hard-coded in the query). $ndhki case the DHT is able to skip the lookup step
and can forward the message/request directly to the renoole. n

The three intra-node operations are also key to the oparatithe query processaiocalScan and
handleLScan allow the query processor to view all the objects that aregareat the local nodercwData
andhandleNewData enable the query processor to be notified when a new objéntsat the node. Finally
upcall and handle Upcall allow the query processor to intercept messages sent viacthecall. As an
optimization, all three types of requests¢alScan, newData, andupcall can be limited by specifying a
storage identifier prefix that must be matched.

3.3 Query Processor

Having described the runtime environment and the overlayord, we can now turn our attention
to the processing of queries in PIER. It is important to nbeg PIER is unique in its aggressive reuse of
DHTs for a variety of purposes traditionally served by diffiet components in a DBMS. These include: query
dissemination (Section 3.3.3), hash index (Sections 2u8d34.3.1), range index (Section 3.3.3), partitioned
parallelism, operator state (Section 3.3.5), and hiereatbperators (Sections 4.2 and 4.3).

We introduce the PIER query processor by first describingdta representation and then explain-
ing the basic sequence of events for executing a snapshohtinaous query.

3.3.1 Data Representation and Access Methods

Recall that PIER does not maintain system metadata. As dt,resery tuple in PIER is self-
describing, containing its table name, column names, ahofrootypes.

24

PIER utilizes Java as its type system, and column valuestaredsas native Java objects. Java
supports arbitrarily complex data types, including nestiimheritance and polymorphism. This provides
natural support for extensibility in the form of abstractalypes, though PIER does not interpret these types
beyond accessing their Java methods.

Tuples enter the system through access methods, which ntacta variety of sources (the internal
DHT, remote web pages, files, JDBC, etc.) to fetch the data adtess method converts the data’s native
format into PIER’s tuple format and injects the tuple in traadlow (Section 3.3.4). Any necessary type
inference or conversion is performed by the access methatkst specified explicitly as part of the query,
the access method is unable to perform type checking; ithstgae checking is deferred until further in the
processing when a comparison operator or function accésseslue.

3.3.2 Life of a Query

For PIER we defined a native algebraic (“box and arrow”) datafnguage called UFL (which
stands for the “Unnamed Flow Language”). UFL is in the spifistream query systems like Aurora [2],
and router toolkits like Click [43]. UFL queries are diregiesifications of physical query execution plans
(including types) in PIER, and we will refer to them as quelgngs from here on. A specification of the
language can be found in Appendix A. A graphical user intefealled Lighthouse is available for more
conveniently “wiring up” UFL. PIER supports UFL graphs witlgcles, though such recursive queries in
PIER are the topic of research beyond the scope of this tfE3is

An UFL query plan is made up of one or more operator graphsaafgraphs Each individual
opgraph is a connected set of dataflow operators (the nod#s)he edges specifying dataflow between
operators (Section 3.3.4). Each operator is associatédvytrticular implementation.

Separate opgraphs are formed wherever the query redistiliata around the network and the
usual local dataflow channels of Section 3.3.4 are not usttielea sets of operators (similar to where a
distributed Exchange operator [26] would be placed). bta producer and a consumer in two separate
opgraphs are connected using the DHT (actually, a partici@dmespace within the DHT) as a rendezvous
point. Opgraphs are also the unit of dissemination (Se&i8r8), allowing different parts of the query to be
selectively sent to only the node(s) required by that portibthe query.

After a query is composed, the user application (the cliesitblishes a TCP connection with any
PIER node. The PIER node selected serves as the proxy nottefoser. The proxy node is responsible for
query parsing and dissemination, and for forwarding regolthe client application.

Query parsing converts the UFL representation of the qurtoydava objects suitable for the query
executor. The parser does not need to perform type infergiee is a typed syntax) and cannot check the
existence or type of column references since there is nersysatalog.

Once the query is parsed, each opgraph in the query plan mais$eminated to the nodes needed
to process that portion of the query (Section 3.3.3). Wheademeceives an opgraph it creates an instance
of each operator in the graph (Section 3.3.5), and estaslite dataflow links (Section 3.3.4) between the

25

operators.

During execution, any node executing an opgraph may prodacenswer tuple. The tuple or
batches of tuples are forwarded to the client’'s proxy nodee froxy then delivers the tuples to the client’s
application.

A node continues to execute an opgraph until a timeout spddifi the query expires. Timeouts
are used for both snapshot and continuous queries. A natiteahative for snapshot queries would be to
wait until the dataflow delivers an EOF (or similar messad®js has a number of problems. First, in PIER,
the dataflow source may be a massively distributed data s@uch as the DHT. In this case, the data may
be coming from an arbitrary subset of nodes in the entireegysand the node executing the opgraph would
need to maintain the list of all live nodes, even under systieann. Second, EOFs are only useful if messages
sent over the network are delivered in-order, a guaranteenegsage layer does not provide. By contrast,
timeouts are simple and applicable to both snapshot andncants queries. The burden of selecting the
proper timeout is left to the query writer. This is akin to gwdt-state handling of objects in the DHT.

Given this overview, we now expand upon query disseminadiwh indexing, the operators, and
dataflow between the operators.

3.3.3 Query Dissemination and Indexing

A non-trivial aspect of a distributed query system is to éfitly disseminate queries to the par-
ticipating nodes. The simplest form of query disseminat®io broadcast each opgraph to every node.
Broadcast (and the more specialized multicast) in a DHT & Istudied by many others [11, 64]. The
method we describe here is based upon the distributiondotmiques presented in [11].

PIER maintains alistribution treefor use by all queries; multiple trees can be supported for re
liability and load balancing. Upon joining the network, baRIER node routes a message (usiagd)
containing its node identifier toward a well-known root itiéer that is hard-coded in PIER. The node at the
first hop receives an upcall with the message, records the idedtifier contained in the message, and drops
the message. This process creates a tree, where each mieésage a parent node about a new child. A
node’s depth in the tree is equivalent to the number of hgpméssage would have taken to reach the root.
The shape of the tree (fanout, height, imbalance) is depeiotiethe DHT's routing algorithm. For example,
Bamboo produces distribution trees that are have highrfdariwell connected nodes, Chord [74] produces
trees that are (roughly) binomial; Koorde [41] producesdrthat are (roughly) balanced binary. The tree is
maintained using soft-state, so periodic messages allmnaidapt to membership changes.

To broadcast an opgraph, the proxy node forwards the opgrasisage to the hard-coded ID for
the root of the distribution tree. The root then sends a coath “child” identifier it had recorded from the
previous phase, which then forwards it on recursively. Iigtdistribution trees can be used for robustness.

Broadcasting is not efficient or scalable, so whenever plesgie want to send an opgraph to only
those nodes that have tuples needed to process the qudriikdasDBMS uses a disk-based index to read
the fewest disk blocks, PIER can use distributed indexe®terthine the subset of network nodes needed

26

based on a predicate in an opgraph. In this respect quemndiisation is really an example of a distributed
indexing problerf.

PIER currently has three kinds of indexes: a broadcastigatgindex, an equality-predicate index,
and a range-predicate index. The broadcast-predicatr iadiee distribution tree described above: it allows
a query that ranges over all the data to find all the data. Hygyaedicates in PIER are directly supported by
the DHT: operations that need to find a specific value of atgaring key can be routed to the relevant node
using the DHT. For range search, PIER uses a technique @afeefix Hash Tre¢PHT), which makes use
of the DHT for addressing and storage. The PHT is essental@silient distributed trie implemented over
DHTs. A full description of the PHT algorithm can be found @5]. The index facility in PIER is extensible,
so additional indexes (that may or may not use the DHT) cardoesaipported in the future.

Note that a primary index in PIER is achieved by publishingtaé into the DHT or PHT with the
partitioning attributes serving as the index key. Seconthatexes are also possible to create: they are simply
tables of {(ndex-key, tuplelDpairs, published wittindex-keyas the partitioning key. TheeiplelD has to be
an identifier that PIER can use to access the tuple (e.g., amzdie). PIER provides no automated logic to
maintain consistency between the secondary index and swestbples.

In addition to the query dissemination problem describeavapbPIER also uses its distributed
indexing facility in manners more analogous to a traditidbBMS. PIER can use a primary index as the
inner relation of a Fetch Matches join [53], which is essahtia distributed index join. In this case, each
call to the index is like disseminating a small single-tatlequery within the join algorithm. Finally, PIER
can be used to take advantage of secondary indexes, or mttetewhose values are the keys for another
index. This is achieved by a query explicitly specifying anggoin between the secondary index and the
original table; the index serves as the outer relation oftatF&latches join that follows theplelD to fetch
the correct tuples from the correct nodes. Note that this-g@mcan be situated as the inner relation of
a Fetch Matches join, which achieves the effect of a disteithundex join over a secondary index. These
methods are discuss further in Chapter 4.

3.3.4 Local Dataflow

Once an opgraph arrives at a node, the local dataflow is seA lpy feature to the design of the
intra-site dataflow is the decoupling of the control flow aagldlow within the execution engine.

Recall that PIER’s event-driven model prohibits handlesetfblocking. As aresult, PIER is unable
to make use of the widely-used iterator (“pull”) model. kest, PIER adopts a “non-blocking iterator” model
that uses pull for control messages, and push for the datdfieawquery tree, parent operators are connected
to their children via a traditional control channel basedunction calls. Asynchronous requests for sets of
data probeg are issued and flow from parent to child along the graph, nikelthe open call in iterators.
During these requests, each operator sets up its relewant@t the heap. Once the probe has generated

3We do not discuss the role of node-local indexes that enalleatcess to data stored at that node. PIER does this initiotratl
fashion; its main memory access method uses a hash tabéestdatture.

27

state in each of the necessary operators in the opgrapliattieis unwound as the operators return from the
function call initiating the probe.

When an access method receives a probe, it typically regifde a callback (such as from the
DHT) on data arrival, or yields and schedules a timer evetit thie Main Scheduler. There are three types
of probes: set, stream, and set-predicate. Set probesege@st for all data that is presently available at this
node at this time (excluding any local I/O such as disk). @tr@robes are a continuous request for new data
as it becomes available at this node, existing data is nogvet. Finally, a predicate can be embedded in
a set probe that limits the data retrieved. This is a standptichization to push-down a selection predicate
into a data source and permits index lookups.

When atuple arrives at a node via an access method, it is @fisime child to parent in the opgraph
via a data channel that is also based on simple function @ish operator calls its parent with the tuple as
an argument. The tuple will continue to flow from child to parim the plan until either it reaches an operator
that removes it from the dataflow (such as a selection), ibissumed by an operator that stores it awaiting
more tuples (such as join or group-by), or it enters a queeeatpr. At that point, the call stack unwinds.
The process is repeated for each tuple that matches the, pmbrultiple tuples may be pushed for one probe
request.

Queues are inserted into opgraphs as places where dataff@@sging “comes up for air” and
yields control back to the Main Scheduler. When a queue vesai tuple, it registers a timer event (with
zero delay). When the scheduler is ready to execute the u@uer event, the queue continues the tuple’s
flow from child to parent through the opgraph. Queues enauersive dataflows. Without queues, the stack
depth would increase with each level in the recursion. A gualows the stack to unwind between each
successive level. Additionally since the queue yields @nstarvation of other queries/opgraphs does not
occur.

An arbitrary tag is assigned to each probe request, theiblHtER operators use an incrementing
counter to generate unique tags. The same tag is then séntheidata requested by that probe. The tag
allows for arbitrary reordering of nested probes whild silowing operators to match the data with their
stored state (in the iterator model this is not needed sing®wat oneget-nextrequest is outstanding on each
dataflow edge).

Finally, the local dataflow allows signals to be passed froifddo parent. The first signal currently
supported is an end-of-probe signal that is generated witktteasource has finished pushing all tuples that
match a set (or predicate-set) probe.

3.3.5 Operators

PIER is equipped with 15 logical operators and 29 physicatators (some logical operators have
multiple implementations). Most of the operators are samib those in a DBMS, however PIER also uses
a number of non-traditional operators, particularly fag itcess methods. Table 3.3 lists the operators and
implementations.

Basic Operators

28

Operator Implementation Brief Description
selection Basic Evaluates a predicate against a tuple.
projection Basic, Generate Modifies the attributes of a tuple.
tee Basic Logically combines all parents to appear as one.
union Basic Logically combines all children to appear as one.
join SymmetricHash, Performs the relational equi-inner-join operation.
Index
group-by Basic, DualFlow Aggregates tuples with the same values for the group-by
fields.
duplication | Basic Eliminates duplicate tuples.
elimination
scan DHT, DHTMes- | Retrieves tuples from a data source.
sage, IP, JDBC
Csv
Other Operators
Operator Implementation Brief Description
put DHT, DHTMes-| Stores atuple in non-query specific storage mechanisms.
sage, IP, Bloom,
Eddy
result NetSend Sends result tuples to query requester.
flow control | Basic Controls the timing and flow of data through an opgraph.
queue Basic Temporarily holds tuples during processing.
cache MemCache, Stores tuples during the execution of the query.
MemUpdateCache
eddy Basic Dynamically reorders the execution of joins in query
plan as described in [4].
null Null, NullSource,| A placeholder for operators that do not match other ex-
NullSink isting operators.

Table 3.3: Selected list of PIER operators and implemeoiati

29

Currently, all operators in PIER use in-memory algorithmigh no spilling to disk. This is mainly
a result of PIER not having a buffer manager or storage stésysSince network throughput and latency are
the dominating bottlenecks this design decision does nat hdarge effect on PIER’s current usage model.

Physical operators can be classified into four main categosources, sinks, pass-through, and
flow-modifying. Sources are operators that upon receivipgphe fetch or create zero or more tuples. If the
source is not capable of handling a particular probe (fongxta it cannot evaluate a predicate-set probe) the
probe is passed to its children if any exist. Depending ortythe of probe and the data source, the source
operator can optionally produce a EOP signal.

Sinks are operators that consume tuples removing them fnerdataflow. The result operator is
the most common sink operator, but others such as an opératsert data into the DHT are also sinks.

Pass-through operators modify or drop data as it moves ghrthe dataflow. These operators do
not respond to probes and pass them through to their childéetection and projection are examples of
pass-through operators.

Flow-modifying operators may change or issue new probeimgltihe course of processing. Ex-
amples of flow-modifying operators are joins, some groubgrator implementations and the control flow
operator. For example in an index join, when the join openaceives an outer tuple it will issue a predicate-
set probe for the matching tuples from the inner relatiore flbw control operator issues probes based on a
number of events such as the starting of a query, periogjcalbased on the number or rate of tuples arriving
at a data source.

Throughout the development of PIER the granularity and sadmperators have changed. In the
early version of PIER monolithic operators that handledtipld aspects of the dataflow were used. For
example the first join was called a DHT join and a single omerhtndled fetching data from the DHT,
evaluating selection predicates, and joining tuples. &mesnolithic operators were broken up into smaller
operators that are better-scoped and easily reused foipteuduery plans.

3.3.6 Flow Control

Related to the evolution of the operators, was the changesiraging flow control. For example,
the initial implementation of the group-by operator wasiglesd as a pass-though operator. At the start of
the query the data source would begin receiving/retrietipées. Sometime later when a result was desired,
the flow control operator at the root of the tree would issuetgoeobe down the tree to the data source. The
data source would then send all the collected tuples reg¢eiVee group-by operator would aggregate the
tuples and then send the result tuple(s) once it receiveerttieof-probe signal from the source.

This design suffered from two problems. First, the datas®wuras responsible for storing the data
until the probe was issued. Second, the flow control operediimited information to decide when to issue
the probe. Often a simple timer in the flow control operatos waed to trigger the probe. This is often not
the best method and will be discussed in depth in Section 4.2.

A later implementation of the group-by operator integrdtatttions of the flow control operator

30

directly into the group-by operator. The group-by operatmtead of the flow control operator would issue
probes to the data source. While this allowed the group-teyaipr more flexibility in timing probes and
result generation, it still required the source to storetthpdes. Additionally, this solution was not elegant
with two operators (the group-by and flow control operatbes)ing similar functions and duplicated code.

The final implementation of the group-by operator, calledi&DFlow”, uses two flow control
operators in the query plan. One flow control operator pudka drom the source into the group-by operator,
which aggregates the data as it arrives. A second flow coop@iator is used to retrieve the current set of
aggregates/results from the group-by operator. This degigws data to be immediately aggregated when it
arrives requiring no storage. The second flow control operzn issue a stream probe allowing the group-by
operator to determine when to generate result tuples, dlaweontrol operator can control result generation
and issue a set probe.

3.3.7 Error Handling

Error handling can be especially difficult given some of PEEgesign decisions. The lack of
system catalogs means queries can be not be staticallyatedichgainst a schema. The existence of an
attribute or its data type is not known until the query is exed. Additionally, the primary query interface
is UFL, which unlike SQL is a low-level physical dataflow deption that is unfamiliar to most users. All
but the best query writers will require debugging tools @reya simulator) to understand what is happening
inside the execution of the plan. Finally, runtime errorngseal by unavailable data sources or other transient
conditions can easily overwhelm a client if every node pssg®y the query was to send an error message.

PIER provides a number of facilities to help a user deal witbrs including: optional error mes-
sages, silent dropping of malformed tuples, and the ahditjiew a copy of tuples flowing into or out of any
dataflow operator.

In a wide-area decentralized application it is likely th&ER will encounter tuples that do not
match the schema expected by a query. This can be caused hyrlg wotten query, different versions
of the data source at the node, or errors from the data sousedé iPIER uses a “best effort” policy when
processing such data. Query operators attempt to procelssigae, but if a tuple does not contain the field
of the proper type specified in the query, the tuple is simpégarded. Likewise if a comparison (or in
general any function) cannot be processed because a fieldaisincompatible type, then the tuple is also
discarded. An optional error message can be requested vghficiwarded to the user. This feature is useful
to debug the initial operation of a query, but when there sudtfin a production system the number of error
messages can easily overwhelm a client. By default, tuptasare silently dropped, but it can be enabled
on an operator-by-operator basis.

The input or output tuple streams to each operator can bpétdand forwarded to the user client.
The user specifies whether to activate this feature in theyqeguest. During the execution of the query
PIER will then send a duplicate copy of each input/outpulgtup the user client as if it was a result tuple.
This enables the user to peek inside a running dataflow angtseh tuples (and their schemas) are in which

31

parts of a dataflow. This feature is also enabled on an opeogtoperator basis. There is no design reason
this feature could not be activated and deactivated aftereayqvas started, however the interface to do this
was never implemented.

Since error messages and internal dataflow streams aredyathrfled directly to the PIER proxy
node of the client, there is no opportunity to drop duplicatssages or provide a global rate-control mech-
anism. PIER does allow the client to specify a limit to the t@mof messages received from any one node,
however in very large networks this has limited benefit. Thals to the default policy that all but parser
errors (which originate only from the proxy node itself) ailently dropped.

3.3.8 No Global Synchronization

PIER nodes are only loosely synchronized, where the err@yinthronization is based on the
longest delay between any two nodes in the system at any imen An opgraph is executed as soon as it
is received by a node. Therefore it is possible that one nallée&gin processing an opgraph and send data
to another node that has yet to receive the query. As a coerequPIER’s query operators must be capable
of “catching up” when they start, by processing any dataitie have already arrived. This depends on the
data sources (usually the DHT) to buffer the data for showétiintil the query is started on the local node. In
our experiments tuples sent via the DHT have at least a onetenfimeout which is more than sufficient.

32

Chapter 4

Query Processing

In this chapter we describe the main query processing dfgosi, including aggregation and joins.
Our goal is to develop algorithms that optimize three keyrivgt minimize overall network usage, minimize
answer latency, and distribute network communication Bgaanong all participating nodes. We present
experimental results alongside the algorithm descrigtidimerefore, we start this chapter with a description
of the experimental setup.

4.1 Experimental Setup

Traditionally, database scalability is measured in terfndadabase sizes. In the Internet context,
it is also important to take into account the network chamastics and the number of nodes in the system.
Even when there are plenty of computation and storage ressuthe performance of a system can degrade
due to network latency overheads and limited network capaglthough adding more nodes to the system
increases the available resources, it can also increaselas. The increase in latency is an artifact of the
DHT algorithm we use to route data in PIER (as described iti@e8.2). In particular, with Bamboo — the
DHT scheme we use in our system — a data item that is sent betweearbitrary nodes in the system will
traversdog,n intermediate nodes on average, whiere a parameter of the DHT (set to 16 in our tests) and
n is the number of total nodes in systems.

To illustrate these impacts on our system’s performancesgeawariety of metrics, including the
maximum in-bound traffic at a node, the aggregate trafficérstystem, and the time to receive the last or the
k-th result tuple.

The simulator and the implementation use the same code Baseaimulator allows us to scale up
to 10,000 nodes, after which the simulation no longer fits MR- a limitation of the simulation, not of the
PIER architecture itself. The simulator’s scalability csrat the expense of ignoring the cross-traffic in the
network and the CPU and memory utilization. We use the Kingehtopology [32] with each node having
a 1.5Mbps in-bound and out-bound link capacity. We use FIEBsaging queuing to model network traffic.

33

API Function Example for AVERAGE

this.count++;
this.sum += value;

void addvalue(value)

value getresult() return sum/count;

. is. += . ;
void combinePSR(psr) :E:z g(ljumnt+: pg;srsﬁi)nu.nt,

Table 4.1: API for aggregation functions and an example @mantation of an AVERAGE function.

In addition, we make two simplifying assumptions. Firstpur evaluation we focus on the band-
width and latency bottlenecks, and ignore the computatimhraemory overheads of query processing. Sec-
ond, we implicitly assume that data changes at a rate higla@rthe rate of incoming queries. As a result,
the data needs to be shipped from source nodes to computaiites for every query operation.

For each data point, the same experiment was run ten timbgshetaverage plotted and the error-
bars indicating the average plus and minus the standardtievi To compute the network communication
caused by the query workload (and discount the DHT mainmand query dissemination traffic) a sec-
ond identical experiment was performed with the query béiisgeminated but not executed. The network
communication measurements presented are the differetweén the two experiments.

4.2 Aggregation

Aggregation is the process of condensing a large colleci@ndata into a single value. Aggrega-
tion is commonly combined with grouping such that a set ofgsifs partitioned into a number of groups and
an aggregate value is reported for each group.

An aggregation function can be defined using two operatiorthe aggregate state: add a value to
the aggregate, and get the value of aggregate. The aggfagati®n’s running state is called a partial state
record (PSR). Some aggregates such as MAX, MIN, SUM, AVERABErelatively straightforward, while
other aggregates such as histograms and spectral Bloors filt&s]] have more complex operation implemen-
tations. A special property of PSRs is that they can also b#bated together using a third operation defined
for the aggregation function. The API and an example ardlddta Table 4.1.

In [27] three classes of aggregate functions are definedriluisve, algebraic, and holistic. [54]
expands the classification of aggregations with two addticlasses: unique and content sensitive. We
primarily consider distributive and algebraic aggregagizvhich have the special property of having constant
sized PSRs. Content sensitive aggregates have PSRs tlsitedgoroportional to some statistical property
of the data, such as the range or variance. Our techniquealsampply to these functions insofar as the
properties of the data allow the size of the PSR to be appmateichas a constant. Holistic (and unique)
functions have PSRs that are proportional to the numberrofj(e) data items and do not benefit from our
algorithms although they can still be correctly computed.

34

We divide our discussion of execution techniques into twougs. First we describe “one-shot”
aggregates where the aggregate is computed once for asshtttuples, and then we describe continuous
gueries where the aggregate is computed periodically odgnamic stream of data. We discuss these with
respect to relatio® and the following generic COUNT query:

SELECT count(*)
FROM R;

4.2.1 One-Shot Aggregation Queries

The simplest method for computing an aggregate is to caflach individual source tuple in one
location, and then calculate the aggregate. In this sagrthg network usage is proportional to the number of
tuples,t, multiplied by the size of the aggregate field(s)being aggregated. The drawbacks of this method
are that it requires a significant amount of communicatiahisooncentrates the entire tiebandwidthload
(t x s) onto a single root node. However, by taking advantage oatilty to first aggregate sets of tuples
into PSRs and then aggregate those PSRs together we cangewale efficient algorithms in the spirit of
systems like TAG [54].

We can easily decrease the communication by having eachaggtegate its local data first, and
then send that PSR to the root. The total communication battldvis now proportional to the number of
nodesp, in the system and the size of a PSRIn most cases < ¢t andp ~ s son x p < t x s. Therefore
we only consider algorithms which communicate PSRs insté#ue source tuple field.

For one-shot aggregation queries we develop eight algosithn four design dimensions as shown
in Figure 4.1. The first dimensiostructure determines the type of dataflow topology used: one level or
multiple levels. The simplest algorithms are one level désg all the PSRs directly to a single root node.
The multi-level algorithms form a tree where each node eiteproot has a single parent to which it sends
its PSRs to. We describe specific tree algorithms shortly.

The second dimension indicates whether there is in-netaggkegation of the data. If there is no
in-network aggregation each node will only forward PSRsatais the root instead of combining PSRs first
and only forwarding the combined PSR. In-network aggregatnly applies to multi-level topologies which
have trees with interior nodes. If there is just a singlell@here are only leaf nodes and one root, there are no
opportunities for in-network aggregation. Multi-leveptogies with no in-network aggregation require that
interior tree nodes send multiple messages to their pargnte each child’s PSR is forwarded individually.
These algorithms are not beneficial since they involve subisilly more network communication. These
extra messages do not improve either of the other metrice ghme latency is increased and the root will
still receive a message from each node. We only considegtbigp of algorithms to show the benefit of
in-network aggregation.

The third dimension represents the routing method. Theogtare to use IP routing or the DHT
routing. With IP routing the query hard-codes the IP sockietrass where each node should forward its
PSR to. This method is feasible when the query only needsédoifypa single root node, which could be

35

Structure In-Net Routing Timing Algorithm

1
1
_—+>> Optimal = 1P-1L-Optimal
1
T3 Timeout —+>| 1P-1L-Timeout

: __+> Optimal —>] DHT-1L-Optimal

P

No

DHT '
> Timeout —>| DHT-1L-Timeout
Yes H N/A: No Interior Nodes /

/z IP HV/A:Requires RoutingAIgorithn/
\ __+> Optimal —+>>| DHT-ML-Optimal

1 =Y DHT _ .

One-Level

No

T] 1
> Timeout —=>>{ DHT-ML-Timeout
1 1
IP —:ﬁéV/A: Requires Routing AIgonthn/
1

Multi-Level

Yes

+ DHT-HI-Optimal *

\ __+> Optimal —]
1= DHT _ V| —
' > Timeout —t DHT-HI-Timeout
1

Figure 4.1: Various one-shot aggregation algorithms ower limensions. Algorithms in dashed boxes are
not evaluated via simulation because they are not implezdgntPIER.

the node that issues the query. For a multi-level hierareagh of the interior nodes must be predetermined
and assigned children. Building this topology is equivakenusing an overlay network, and requires an

additional out-of-band routing algorithm. We do not propasly such algorithm since the DHT is one such

routing algorithm.

When DHT routing is used the query only needs to specify dmgudentifier for the root. For one-
level topologies, the DHput method is invoked, while for multi-level topologies the DH#nd method
with upcalls is used to form a tree. The tree is dynamicallyrfed using the same process used in query
broadcasting (see Section 3.3.3). Each node computescabdggregate and uses the DHdnd call to
send the PSR towards the root identifier specified in the quérthe first hop along the routing path, PIER
receives an upcall and processes the PSR. If combined witbtimork aggregation PIER will combine the
received PSR with its own local PSR. After waiting for moreRBSo0 arrive from other nodes, the node then
forwards the PSR towards the root using the D&thd. If there is no in-network aggregation the PSR will
be immediately forwarded towards the root using the Didifd. At the next hop (one step closer to the root)
that PIER node repeats the same procedure. Eventually theviibreceive PSRs that combine to include
data from every node and the root can produce the final glotsaler.

Finally, the timing dimension determines how each noded#sxivhen to send its PSR to its parent
(for multi-level topologies) and when the root forwards as\aer to the requester (for all topologies). This is
necessary because aggregation is a blocking operatiomameult can not be produced until all the data has
been processed. The optimal timing (which has the loweshégtwithout missing any PSRs) is immediately

36

14 T AR T T T T T T TTTT
1P-1L-Optimal —+—
1P-1L-Timeout ---%--- I

& 12 DHT-1L-Optimal ---x--- f—
= DHT-1L-Timeout & /
= DHT-ML-Optimal —-#-— j
S 10 | DHT-ML-Timeout ---6--- .
3 DHT-Hi-Timeout -- -@-- - /
5 8 I f/ &
£ [
£ /
3
= 6
o
2
2 4
8
()
= 2

0

1 10 100 1000 10000
Number of Nodes

Figure 4.2: Total network communication for one-shot aggtmn algorithms with varying number of nodes.

after the node receives all the PSRs from its children. Ferlemel topologies this is after the root receives
a PSR from each node in the system. However in practice, thtenith not know a priori how many nodes
are in the system and so the optimal solution is often umettdé. Instead, we can use a query-specified
timeout condition to determine when to send. A simple coadits a fixed timeout, such as five seconds.
The condition can also be specified as a rate, such as wherotieeraceives less than one PSR per five
seconds. The timeout strategy attempts to guess at whérealbta has been received. If the timeout occurs
too soon, the node will be required to send an additional PBiRtihe additional data. If the timeout occurs
late, the end-user latency is unnecessarily increased.

Using these four dimensions we can create eight algoriteav&n of which can be directly imple-
mented in PIER using different query plans. DHT-Hi-Optinsaiot implemented in PIER since the topology
generated by the DHT is not knovenpriori. Without knowing the topology the expected number of mes-
sages to receive at each node can not be predetermined. fAlbsieription of each algorithm can be found
in Appendix B.

Figure 4.2 shows that overall bandwidth usage for the sawgfeimented algorithms for various
sized networks and a timeout condition of five seconds. Th&LHDptimal always has the least overall
bandwidth usage. This is expected as each node sends egaetlSR except the root which sends a
single result tuple. The IP-1L-Timeout also has low ovebalhdwidth usage, however in larger networks
the timeout is too short, so some PSRs arrive after the titn@de root must then revise the answer multiple
times resulting in slightly higher communication costse(ttifference is too small to be noticeable in the
figure). The DHT-1L-Optimal and DHT-1L-Timeout algorithmequire more bandwidth that IP-1L-Optimal
and IP-1L-Timeout due to the DHT message overheads.

The DHT-Hi-Timeout falls in the middle of graph since thednbr nodes will send at least two

37

PSRs. The cause of this extra communication is due to theolatdpology information (nodes do not know
their depth in the tree) and a single timeout condition isasga on all nodes. In the DHT-Hi-Optimal, nodes
would know the topology and would be able to determine if tiveye leaf nodes. Leaf nodes do not require
a timeout since they do not receive PSRs from other nodesrefidre leaf nodes should send their PSR
immediately. Interior nodes with only leaf nodes as chidweould then send their PSRs next (or have the
next lowest timeout) and so forth up the tree to the root whiohld send last (or have the highest timeout).

Without this information, every node must first act as if itrer@ leaf node and send its local PSR
towards the root. Nodes that receive data from their chilsh@v know they are interior nodes and will send
a second PSR based on the data received from their childremidr nodes higher in the tree will receive the
second round of PSRs and send a third round of PSRs. Evenbudyithe root will receive additional PSRs
and the final answer will be produced. The total number of agssent is based on the number of nodes at
each level of the tree.

The DHT-ML-Optimal and DHT-ML-Timeout algorithms illugite the cost of not using in-network
processing. Both algorithms use significantly more bantiwsthce each node’s PSR is simply forwarded to
root and not combined with other PSRs.

In Figure 4.3 we can see that in-network processing (DHTFiieout) has the distinct advantage
of significantly reducing the bytes received at the root aisttiduting that load to other nodes in the system.
The nodes receiving additional load may be at any level (@xtee leaves) in the tree, since the load is
based on the number of direct children, not the size of thesabMulti-level algorithms with no in-network
processing also cause other nodes to receive additionaages but do not change the load on the root.
Nodes that are higher in the tree (culminating with the roeteive more messages than nodes lower in the
tree. Single level algorithms simply have high load at tingls root.

The final metric we consider for these algorithms is lateraytiie final answer to be received,
as shown in Figure 4.4. This metric allows us to see the bigrdifice between the optimal timing and
timeout methods. Algorithms that have optimal timing proeldinal answers earlier than those that must
wait for a timeout to occur. This is particularly noticeabligh small networks and less noticeable with larger
networks. Furthermore, in very large networks the timeoay ipe too short, which causes the initial results
to be revised later. While these early results do have sotne tlaey also use more network communication.
This highlights the general problem with timeouts which fixed and are a “one size fits all” solution. For
continuous queries that we discuss next, we are able to iregimmeouts by adapting to the conditions of the
network and topology.

In summary, hierarchical (multi-level) in-network prosegg) aggregation query plans require more
overall bandwidth but are better at spreading that load rairly. The timing method not only effects
overall bandwidth, since early timeouts cause extra messdyit also latency is dictated by timing. While
optimal timing is (not surprisingly) best, it is often noaf@ble since the number of participating nodes and/or
topology are not knowa priori.

38

4.5 T T T T T T

1P-1L-Optimal —+—

4k DHT-1L-Optimal ---x---
DHT-ML-Optimal ---:---

a5 DHT-Hi-Timeout &

25

Inbound Network Communication (MB)

8160 8165 8170 8175 8180 8185 8190 8195
Node (Sorted by traffic)

Figure 4.3: In-bound bandwidth usage for the fifty nodesiving the most messages in a single one-shot
aggregation experiment with 8192 nodes.

45 T T
1P-1L-Optimal —+—
40 | 1P-1L-Timeout ---%---
DHT-1L-Optimal ------
DHT-1L-Timeout & ' X
35 - DHT-ML-Optimal —-—=- ‘ .
DHT-ML-Timeout ---6-- oo
30 DHT-Hi-Timeout -- -e-- - i

Latency (seconds)

Number of Nodes

Figure 4.4: Latency for one-shot aggregation queries vatlyimg number of nodes.

39

4.2.2 Continuous Aggregation Queries

While the semantics of continuous queries are an entirarelsd¢opic (see [12, 3]), PIER adopts
a simple model for continuous aggregation queries. Eachygpecifies the frequency of epochs with the
first epoch coinciding with the start of the query. For eacbodp the query results are solely based on the
data fetched from the data source at the start of the epochthé responsibility of the data source to only
provide current/valid data. This is closest to semantigaroonly referred to ason-overlapping sliding
windows Other query semantics are possible using the built-inygaperators. For exampleyerlapping
sliding windowscan be achieved through the use of the MemUpdateCache opgsed Section 3.3.5) which
stores tuples for a specified duration of time.

With respect to the distributed aggregation computationfiouous queries can be seen as issuing
a one-shot query periodically with an extra field contairangncrementing epoch number. A straw-man im-
plementation of executing a continuous query is to simpbcexe every epoch as a separate query. However,
the primary difference to one-shot queries is that the geagine knows that the query will be essentially
“issued” periodically. Thus the system can store the togwland timing from the previous epoch to use
again or adapt in the next epoch. This enables a wider rangessible algorithms/query plans. Some of the
new query plans can provide lower latency and/or decreaseanunication as compared to the straw-man
implementation.

With one-shot queries we identified four dimensions for aggtion algorithms (structure, in-
network computation, routing, and timing). For continuaugeries we add a new dimension, dynamism.
Dynamism indicates whether the topology changes congthetiveen epochs or if the topology is held fixed
(or stable) after the first epoch except to recover from faguNormally, the DHT is prone to changing routes
over time, sometimes changing with each message. This &iset¢he DHT router is trying to greedily opti-
mize end-to-end latenéyWhen a message is sent on one path, that path may becomexpensige by the
time the next message is sent and another path may now be fastanany applications this is the desired
behavior, however, for applications that want to use theespath for multiple messages, the application
layer must store the path and force the DHT to use that patfs i§mot the same as source routing, since
each node only stores and remembers the next hop. Instesachdre similar to network protocols that use
virtual channels.

Continuous queries also enable us to solve a problem thasloteueries suffer. The DHT routing
may create trees that are not well balanced or that have vighyit-degree for a few nodes. In one-shot
gueries we noticed that if one node, such as the root, hasyahigh in-degree, the latency is longer. The
DHT may create trees that have nodes (maybe not the roo@ld@mbhave high in-degree. Recall Figure 4.3,
which shows the in-bound network communication (which ispgartional to the in-degree since all PSR
messages are of equal size) for some nodes during a onetsdrgt he DHT-based hierarchical aggregation
(DHT-Hi-Timeout) query shows that three nodes receive divertimes the data of most nodes and another
six nodes receive over twice the data of the remaining 818@$.0T his imbalance of in-degree and network

1 This is not a requirement of a DHT implementation, rathes thioften a design choice made by DHT designers.

40

traffic can lead to network congestion and increased latency

With a one-shot query there is no opportunity to correct thiealance. However, with continuous
gueries an in-degree imbalance in one epoch can be coriadtédre epochs, improving the performance of
the query over time. Nodes with high in-degree can send aageds some of their children instructing them
to use a different parent. Over a number of epochs the tréestabilize to a new topology that enforces a
maximum in-degree policy. While the forming of this treeu@gs additional messaging, continuous queries
enable the amortizing of this cost over the length of the guafke call this methodreerouting.

In PIER we use a simple implementation to enforce the maxinmidegree. When a node sends
a message to a parent, it appends two fields to the messaggeldnéat includes the node’s height in the
tree and a second field advertising the number of additidniren that the node and all of its children can
handle. For a leaf node, the number of children that the nadéandle is a fixed number set to 64 by default.
For an interior node, that number is the sum of the values reasitly reported by its children plus its fixed
value minus the number of active children. The height of aensdtalculated by adding 1 to the maximum
height value reported by any active child, or 0 if the nodesduat have any active children.

When a node receives a message from a child it determine®rttéts child is in its list of active
children. If the node is in the list, the record for the chiéduipdated to reflect the information in the latest
message received. If the child is not in the list and therefis@slot at this node, the child is simply added
to the list active children. However, if the child is new ahéite are no free slots at this node, the node will
select a replacement parent for the child. The replacenarnpis chosen by selecting the active child with
the lowest height and the highest number of advertised fote ©nce the replacement is chosen the parent
sends a redirect message to the child. Upon receiving thieoctthessage, the child will now send messages
to the new parent until it stops responding or sends the elmitdher redirect message.

Finally, we also have two additional timing strategies fonttnuous queriesearnedandtopology
In the learned scheme, interior tree nodes maintain a ltbtedf children across epochs. Once a node receives
data for the current epoch from each of those nodes it cansiieahits PSR to its parent. If the tree is stable,
after the first epoch the timing will be optimal. In practitettree may not be stable, a node that does not
receive data from a child after a fixed timeout (i.e. the lenaftan epoch) the child is removed from the
list and the received data is sent. If a node receives a PSRdroew node, it is immediately added to the
children list. This method could be further improved by ssphg the fixed timeout with an adaptive timeout
based on the each child’s average latency and the variahedixed timeout is used in our experiments.

The topology timing method is very similar to the learned moett The one difference is when a
node instructs a child to use a new parent, it immediatelyorars that child from its child list instead of
waiting for the fixed timeout. This is strictly better tharetlearned method which will incur unnecessary
timeouts, increasing latency while the tree is being otadi This method is only applicable if the tree
routing method is used.

Using these five dimensions we can create a plethora of gigasimany of which are implemented
in PIER. Figures 4.5, 4.6 and 4.7 show the options. In Appe@diach of the algorithms is briefly described.
We now show a number of experiments to highlight the impad#ferences. In all experiments we continue

41

Structure In-Net Routing Dynamism Timing Algorithm

Optimal 1P-1L-Optimal

AN

Dynamic = Timeout 1P-1L-Timeout

\

IP Learned 1P-1L-Learned

/

Stable

¢

N/A: No Topology Changes /

Optimal DHT-1L-Optimal

L DHT-1L-Timeout

Dynamic Timeout

\
A

One-Level E DHT ! Learned : DHT-1L-Learned
1 \ 3
: i = Stable N/A: No Topology Changes /
1 1
1] 'l
Yes —t T >/ N/A: No Interior Nodes /
1 1

Figure 4.5: Various continuous aggregation query algorglover five dimensions.

to use a simple COUNT aggregation query with a new epoch dixergeconds and a total of 30 epochs for
a total of five minutes. All timeouts are also five seconds. Ya@ne the total network communication and
latency for a system with varying number of nodes.

In the first set of simulations we explore the difference mtilming dimension when all data is sent
directly to the root. The root is the only node making a timitegision, which is when to produce the result.
In Figure 4.8 we can see that in this scenario, timing has scednible impact on network communication,
and the only difference is between the algorithms that usscdlP communication and the DHT routing.
The direct IP methods show near linear growth in the networkraunication, while the DHT methods show
faster than linear growth because of the DHT routing ovedthedrigure 4.9 shows the clear differences
between the three timing methods. Regardless of the rqutipiimal and learned perform the same, with
timeouts incurring additional latency.

The learned timing method is effective in determining thetschildren and triggering result
generation once all the data has been received. This is gooelthe optimal timing method is not practical
in real systems where the complete topology for all epochsti&knowna priori. We no longer show results
for the timeout method since it is strictly worse than learmeethod.

We next examine the differences between the structure ofraamcation and the use of in-network
aggregation. As with the one-shot queries Figure 4.10 sliostsending the PSRs directly to the root using
IP is optimal with respect to overall network communicati@HT-ML-Learned used the most bandwidth
since every node sends its PSR to each node on the route toatydhowever at those nodes the PSRs are
not combined. In this situation the same PSR is being sentipteutimes resulting in excessive network
traffic. The hierarchical aggregation, DHT-Hi-Learned,il@mot as good as optimal, performs well. Sur-
prisingly, sending the PSRs directly to the root also usirigrge amount of bandwidth even though each

42

Structure In-Net ' Routing Dynamism Timing Algorithm

1 'l L
| ' . . - P’
P :ﬁ/ N/A: Requires Routing Algorithm /
1 1
/:]Optimal L DHT-ML-Optimal
1
Dynamicf——iéTimeout- : DHT-ML-Timeout
1
Learned — DHT-ML-Learned
1

1
1
1
1
1
1
/
1
1
\
1
1
1
1
:
: Optimal . Tree-ML-Optimal
1 1
1 1
i _y Dynamic —>Timeout—1=>] Tree-ML-Timeout
1 1 1
/ \Learned L Tree-ML-Learned
1
1
\N
1
1
1
1
1

Multi-Level

1
Optimal %:'Tree-ML-S-Optimall

1 1
Stable =3 Timeout Tree-ML-S-Timeout
: —>1 |

\ Learned —:9|Tree-M L-S-Learned |

I Yes ——> See following figure
1
1

Figure 4.6: Various continuous aggregation query algor#tfover five dimensions. Algorithms in dashed
boxes are not evaluated via simulation because they arenptginented in PIER.

43

Structure In-Net ~ Routing Dynamism Timing Algorithm

1 -
No —1—>See previous figure

IP —Eﬂl N/A: Requires Routing Algorithm /

Timeout DHT-Hi-Timeout

Learned DHT-Hi-Learned

Multi-Level Dynamic

Stable

WPy

Learned : Tree-Hi-Learned
Topology : Tree-Hi-Topology

] (]
Optimal — >} Tree-Hi-S-Optimal !

1
»>» Timeout —>»| Tree-Hi-S-Timeout
1
X{ﬁ Learned : Tree-Hi-S-Learned
1

Topology Tree-Hi-S-Topology|

N7

Figure 4.7: Various continuous aggregation query algoréttover five dimensions. Algorithms in dashed
boxes are not evaluated via simulation because they arenptginented in PIER .

a4

300 T T
1P-1L-Optimal —+—
1P-1L-Timeout ---%---
1P-1L-Learned ------
250 1= pHT-1L-Optimal & .
DHT-1L-Timeout —-&-— /
DHT-1L-Learned ---o-- /

200 | /]
150 [

100 | / -

Total Network Communication (MB)

1 10 100 1000 10000
Number of Nodes

Figure 4.8: Total network communication for the routingitng dimensions of continuous aggregation algo-
rithms with varying number of nodes.

80 T AN T T T T T T
1P-1L-Optimal —+—
1P-1L-Timeout ---x---

70 - 1p-1L-Learned ---x---

[m
DHT-1L-Optimal & P
60 L DHT-1L-Timeout —-m-- i |
DHT-1L-Learned ---6--- i

Latency (seconds)

1 10 100 1000 10000
Number of Nodes

Figure 4.9: Average latency for the routing/timing dimems of continuous aggregation algorithms with
varying number of nodes.

45

450

1P-1L-Optimal —+—

| DHT-1L-Learned ---x---
400 I DHT-ML-Learned - ol
DHT-Hi-Learned =}
350 ;A

300 F DA
250 | .
200 | R

150 S

Total Network Communication (MB)

100 + ’,’l // |

1 10 100 1000 10000
Number of Nodes

Figure 4.10: Total network communication for the structur@etwork dimensions of continuous aggregation
algorithms with varying number of nodes.

PSR is only sent once. The hierarchical method outperfoemding the PSRs directly to the root because so
many messages are routed to the root that the root’s in-boetvebrk becomes congested. When a node is
congested the DHT may incur timeouts and believes messagresest, and will retry sending the message
using additional bandwidth.

With respect to latency, the hierarchical method outpentoall other methods when the network
size is very large, including the IP-based method with ogtitiming as shown in Figure 4.11. This can
be easily explained by considering the amount of the datadbeand other other nodes are receiving. In
Figure 4.12 we see that the distribution of network load ghhji skewed as before. With the exception of
hierarchical aggregation the root can become heavily cstedavhich causes the high latency.

While hierarchical aggregation using the DHT was the bedisatibuting load, as previously shown
in Figure 4.12 there are still over a dozen nodes receiviadtiik of the network traffic. In the last set of
experiments we explore the value of further optimizing thdT3 aggregation tree by limiting a node’s
in-degree.

In Figure 4.13 we see that IP-1L-Optimal still performs thestowith respect to the total network
communication. The Tree-Hi-Topology actually uses momedvédth than the DHT-Hi-Learned because of
the extra messages sent from parents to the children. Howeeecan reduce the number of these extra
messages using the Tree-Hi-S-Topology method which ptevbe tree from changing between epochs
unless a failure is detected. This method, even with soma ex¢ssages, uses less network communication
than the standard hierarchical method (DHT-Hi-Learnedgbse there are no longer any nodes with in-
bound congestion and therefore fewer retries for messdggsre 4.14 clearly shows that the tree routing

strategy results in an even distribution of the in-bandkvidtall nodes.

46

90 T AN T T T T T | T T B
1P-1L-Optimal —+— :
DHT-1L-Learned ---x--- ol

80 I DHT-ML-Learned -
DHT-Hi-Learned & X

Latency (seconds)

1 10 100 1000 10000
Number of Nodes

Figure 4.11: Latency for the structure/in-network dimensi of continuous aggregation algorithms with

varying number of nodes.

140 T — : : . .
1P-1L-Optimal —+—
P~ DHT-1L-Learned ---x--- y
Q120 [DHT-ML-Learned ------ £
= DHT-Hi-Learned -8 l
g i
< 100 ; i
ks]
3 |
g]
E sor } |
S !
< i
= 60 ! i
o I
: !
2 st B |
2 o1
3 o
= 20 . | i
x%%** X :
sapagssuiy]

o pa-be o B B 000 ST KRR ROT- R R R - -0 - D
8160 8165 8170 8175 8180 8185 8190 8195
Node (Sorted by traffic)

Figure 4.12: In-bound network communication for the stuoetin-network dimensions of continuous aggre-
gation algorithms for a single experiment with 8192 nodes.

47

140

1P-1L-Optimal —+— ”
DHT-Hi-Learned ---x--- ;

120 |+ Tree-Hi-Topology ---*--- ‘,‘7<_
Tree-Hi-S-Topology & i

100 |- e

Total Network Communication (MB)

Number of Nodes

Figure 4.13: Total network communication for the dynamiesehsion of continuous aggregation algorithms
with varying number of nodes.

While Tree-Hi-S-Topology is unable to match the optimal coumication, the longer the query
runs with a stable set of participating nodes the smallegtgebetween the two strategies will be. This is
because most of the extra communication is occurring in thieféw epochs while the tree is being optimized.
By the fourth epoch the tree is stable and with the excepticheoDHT message overheads is optimal.

Figure 4.15 reinforces the desire to reduce in-bound cdinged he latency for Tree-Hi-S-Topology
is the lowest when the network size is largest. The otheahitical strategies have slightly higher latencies.
The latency curves for three DHT and tree based strategiesaarmonotonically increasing as the number
of nodes in the system increases because of the randomrtésstiee structure based on the DHT routing.
Latency is based on the slowest route used from any leaf athe root node.

Overall the Tree-Hi-S-Topology strategy offers the besio$eattributes. The combination of five
design choices, multi-level, in-network aggregation, Didtiting with in-degree optimization, learned timing
and preventing topology changes except in failures all wogether to produce a solution with low-latency,

moderate overall network communication, and even didiobwf network load.

4.3 Joins

Our join algorithms are adaptations of textbook parallel distributed schemes, which leverage
DHTs whenever possible. This is done both for the softwaggasice afforded by reuse, and because DHTs
provide the underlying Internet-level scalability andustness we desire. We use DHTs in both of the senses
used in the literature — as “content-addressable netwdoksbuting tuples by value, and as hash tables for

storing tuples. In database terms, DHTs can serve as “egefianechanisms [26], as hash indexes, and

48

70 T T T T T T
1P-1L-Optimal —+—
— DHT-Hi-Learned ---%---
g 60| Tree-Hi-Topology ------ i
= Tree-Hi-S-Topology &
s
2 50 F 4
Q
c
g
E 40 .
o
O
< 30} b
o
2
()
=z 20 -
e}
c
=}
2
€ 10 b
0 I 2 A B i BB
8160 816 1 8175 8180 8185 819 8195

Node (Sorted by traffic)

Figure 4.14: In-bound network communication for the dyreswiimension of continuous aggregation algo-
rithms for a single experiment with 8192 nodes.

40 | T | T |
1P-1L-Optimal —+—
DHT-Hi-Learned ---x---
35 - Tree-Hi-Topology ---*---
Tree-Hi-S-Topology &
30 |
w
2 25
Q
(5]
(0]
£ 20
>
(8]
g
5 15
-
10
5F
L
0 $p<"f§’.:‘i‘.‘¥/' . "' N o L
1 10 100 1000 10000

Number of Nodes

Figure 4.15: Latency for the dynamics dimension of contirsiaggregation algorithms with varying number
of nodes.

49

as the hash tables that underlie many parallel join algmsthDHTSs provide these features in the face of a
volatile set of participating nodes, a critical feature aadilable in earlier database work. We also use DHTs
to route messages other than tuples, including Bloom filters
We have implemented two different binary equi-join alduomits, and two bandwidth-reducing

rewrite schemes. We discuss these with respect to relaliaredS and the following generic query:

SELECT R.pkey, S.pkey, R.pad

FROM R, S

WHERE R.joinattr = S.joinattr AND

R.numl1l > constantl AND

S.numl > constant2 AND
f(R.num2, S.num2) > constant3;

We assume that the tuples f& and .S are horizontally partitioned across the network. Unless
specifically stated, we do not make any assumptions as to hevedurce data is placed throughout the
network or which access handle is used to retrieve the salatee

4.3.1 Core Join Algorithms

Our most general-purpose equi-join algorithm is a DHT-dagsion of the pipeliningymmetric
hash join[82], interleaving building and probing of hash tables owteaput relation. To begin the join
PIER will first retrieve each relationk and S, at each node from the local data source. Each tuple that
satisfies all the local selection predicates is copied (witly the relevant columns remaining) and is added
to a new unique DHT namespac¥,, using the DHTput command. The values for the join attributes are
concatenated to form the resourcelD for the copy. The tugleslso tagged with their source table name
since their DHT name does not include the table name (the samespace is used for all tuples from both
input relations).

By the end of the join, tuples from botk and.S will have been hashed on the join attribute. Tuples
from both input relationsi and.S) that have the same values for the join attributes will b&gagsl the same
location identifier. This ensures that the tuples will beteolto the same node during thet operation.

Probing of hash tables is a local operation that occurs atdles in parallel with building the hash
table. Each node registers with the DHT to receiveeaData callback whenever new data is inserted into
the localN partition. When a tuple arrives, a DHjEt to N, is issued to find matches in the other table; this
get is expected to stay local. (If the local DHT key space has beapped in the interim, the:t will return
the correct matches at the expense of additional networkraamtation.). Matches are concatenated to the
probe tuple to generate output tuples, which are sent toakestage in the query (another DHT namespace)
or, if they are output tuples, to the initiating site of theequ

The second join algorithnfetch Matchesis a variant of a traditional distributed join algorithm
that works when one of the tables, séyis already hashed on the join attributes. In this casegtRhb
locally retrieved, and for eacR tuple aget is issued for the correspondisigtuple. Note that local selections
on S do not improve performance — they do not avgids for each tuple of?, and since thesgets are done

50

at the DHT layer, PIER’s query processor does not have thertyity to filter theS tuples at the remote
site (recall Figure 3.1). In short, selections on non-DHffilaites cannot be pushed into the DHT. This is
a potential avenue for future streamlining, but such imprognts would come at the expense of “dirtying”
DHT APIs with PIER-specific features — a design approach veédad in our implementation. Once tlse
tuples arrive at the correspondifijtuple’s site, predicates are applied, the concatenatiparf®rmed, and
results are passed along as above.

4.3.2 Join Rewriting

Symmetric hash join requires hashing both tables, and hesmceonsume a great deal of band-
width. To alleviate this when possible, we also implemerdétil-based versions of two traditional dis-
tributed query rewrite strategies, to lower the bandwidtthe symmetric hash join by avoid communicating
tuples that will not join with any tuples from the other rédat. Our first is asymmetric semi-joinin this
scheme, we minimize initial communication by locally prijag bothR andsS to their location identifier and
join keys, and performing a symmetric hash join on the twgqmtions. The resulting tuples are pipelined
into Fetch Matches joins on each of the tables’ locationtifiers. (In our implementation, we actually issue
the two joins’ fetches in parallel since we know both fetchilsucceed.) Essentially this method creates
two indices on the fly, one for each relation.

The other rewrite strategy uses Bloom joins. First, Blooteifd are created by each node for each
of its local R and .S fragments, and are published into a small temporary DHT spaee for each table.
At the sites in the Bloom namespaces, the filters are OR-esthiegand then broadcast to all nodes storing
the opposite table. Following the receipt of a Bloom filtenaae begins retrieving its corresponding table
fragment, but rehashing only those tuples that match therBffilter. Since Bloom filters only generate false
positives (a tuple matches the filter but will not find any &glo join with) and no false negatives, any errors
introduced by using the Bloom filters results in less bandwsgvings, but does not effect correctness.

4.3.3 Evaluation of Join Strategies

For these experiments we follow the same simulation setugeasribed in Section 4.1. Tables
R and S are synthetically generated. Unless otherwise specifiach ¢uple inR is padded to be 1024
bytes, each tuple it is 1536 bytes and each result tuple is 2048 bytes. The cdastathe predicates
(R.numl > constantl andS.numl > constant2) are chosen to produce a selectivity of 50%. In addition,
the last predicate uses a functipfR.num?2, S.num?2); since it references botR andS, any query plan must
evaluate it after the equi-join. We choose a function as epgdo simply directly comparing the attribute
from each of the two relations (i.&.num?2 > S.num?2) because it allows us to generate one set of relations
for multiple tests and vary the selectivity by setting thastant in the query. We choose the distribution of
the join columns such that 90% & tuples have two matching join tuples i (before any predicates are
evaluated) and the remaining 10% have no matching tuplés ifihese values where arbitrarily chosen so
that most tuples are used in computing the join result. Hewdwy having some tuples not used in the join,

51

the experiments will expose some differences in how thegtimtegies decide what data to move around in
the network. For each node in the network 1®@&nd 100S tuples are injected into the system prior to the
guery running.

As with aggregation we focus on two key metrics: network camioation and latency. However,
unlike aggregation, we measure latency when the 100thtreslé is received instead of the last tuple. The
value 100 was chosen to be a little after the first tuple reckiand well before the last. We avoid using
the first response as a metric here, on the chance that it evgted locally and does not reflect network
limitations. We are not interested in the time to receiveléis result, because as we increase the network
size and data set, we increase the number of results; at smntéythat exercise we end up simply measuring
the (constant) network capacity at the query site, whenealllts must arrive.

Centralized vs. Distributed Joins

In standard database practice, centralized data warehauseften preferred over traditional dis-
tributed databases. In this section we make a performarsesfoadistributed query processing at the scales
of interest to us. Consider a join query where tatitesnd.S are distributed among nodes, while the join is
only executed atr “computation” nodes, where < m < n.

If there aret bytesin toto that passed the selection predicatesiband S, then each of the com-

putation nodes would need to rece'b\%e— nxtm data on average. The second term accounts for the small
portion of data that is likely to remain local. In our case sléectivity of the predicates on bothand S is
50%, which results in a value ofof approximately 1 GB for a database of 2 GB.

When there is only one computation node in a 2048-node n&twaoe would need to provision for
a very high link capacity in order to obtain good responsesint-or instance, even if we are willing to wait
one minute for the results, one needs to reserve at leasti3g fdr the downlink bandwidth, which would

be very expensive in practice.

IP vs. DHTs

The traditional implementations of distributed symmelrésh joins utilize an Exchange-like [26]
operator. These operators hash and route tuples with kdgeland IP addresses of every participating
node. While this is not practical in Internet-scale systénsinteresting to compare the performance of a
DHT-based solution to an idealized IP-based solution.

In Figure 4.16 we show the network overhead of the DHT-bas&dien vs. an IP-based routing
solution. In Figure 4.17 we plot the latency of the two opsiomNot surprisingly the IP method uses less
network bandwidth and is faster. When the size of the netwsdeeds eight nodes the latency till the 100th
result tuple begins to decrease for both methods. This isachiy the increase in the number of result tuples
(recall that the number of source tuples in the system isqotagmal to the number of the nodes in the system)
and therefore the 100th result is produced sooner. Theiadaitbandwidth used by the lookup messages
in the DHT's put method accounts for the addition communication and latexscgach tuple is only sent

52

1200

IP-Based Sym. Hash Join —+—
DHT-Based Sym. Hash Join ---x---

1000

800

600

400

Total Network Communication (MB)

200

1 10 100 1000 10000
Number of Nodes

Figure 4.16: Overall bandwidth usage for a symmetric hashvjith varying number of nodes.

across the network once in both scenarios. However, whldtHT has an impact on latency and network
communication, using the DHT allows us to issue a query witlaopriori knowledge of every node in the

system and their IP addresses.

Join Strategies

We now evaluate the four join strategies when the selegtdfithe predicate on th§ relation is
varied. In Figure 4.18 the overall in-bound network comneation is shown. As expected, the symmetric
hash join uses the most network resources for many worklsiade both tables are rehashed. The increase
in the total in-bound traffic is due to the fact that both thenber of tuples ofS that are rehashed and the
number of results increase with the selectivity of the s&amn S. In contrast, the Fetch Matches strategy
basically uses a constant amount of network resources set¢ha selection of cannot be pushed down
in the query plan (the increase shown is due to sending thitsegenerated by the query). This means that
regardless of how selective the predicate is,Staples must still be retrieved and then evaluated agaiest th
predicate at the computation node. In the symmetric semirgwrite, the second join transfers only those
tuples ofS and R that match. As a result, the total in-bound traffic incredisesarly with the selectivity of
the predicate ory. Finally, in the Bloom filter case, as long as the selectiorSdmas low selectivity, the
Bloom filters are able to significantly reduce the rehashimgpas manyr tuples will not have ai$ tuple to
join with. However, as the selectivity of the selection®increase, the Bloom filters are no longer effective
in eliminating the rehashing @ tuples, and the the algorithm starts to perform similar eospmmetric hash
join algorithm.

In Figure 4.19 the latency till the 100th tuple is plotted.eThtency is mostly constant across all
the workloads shown. The latency is determined by the staigge join. Each strategy requires distributing

53

07 T AL T T T T T T
IP-Based Sym. Hash Join —+—
DHT-Based Sym. Hash Join ---x---
w 06 S S _
o) - [N _
c i 4 X T
@ 05 q O T B .
! / TG
2 04t / T
< 4 /
S ! by
a W
P 0.3 x ,,: i
s j |
So02f) -
Q i
c I
9 //
S 01ty i
o L P | L MR | L MR | L PR
1 10 100 1000 10000

Number of Nodes

Figure 4.17: Latency till the 100th result for a symmetristgoin with varying number of nodes.

the query to the participating nodes and the delivery of ésellts (direct IP communication between nodes).
In the symmetric hash join, the DHT must route a lookup messagit for a lookup response to determine
the destination of each tuple, and then send the tuple bireecthat node. Fetch Matches is slightly faster
since the response to the lookup message includes the tugldaes not require another message (recall
Section 3.2.4. The symmetric semi-join rewrite is essépte@ symmetric hash join followed by a Fetch
Matches join so its latency is almost the sum of the two siaeminus the common overhead of query
dissemination and result collection. Finally the Bloonefiltewrite has the highest latency since the creation

and dissemination of the Bloom filters must occur before tipéets are rehashed.

4.3.4 Hierarchical Joins
Like hierarchical aggregation, the goal of hierarchicahgas to reduce the communication load.

In this case, we attempt to reduce th&-bandwidthof some nodes rather than the in-bandwidth as was the
case with hierarchical aggregation. When performing aflosize of the output relation is not necessarily
negligible. In fact it is possible that the size of the outpeiation is significantly larger than the input
relations. The output of a join can be the cross product oifitpet relations, or have a maximum|dt| x |.S|
tuples. In this case, nodes have the burden of both recdivng tuples and sending output tuples over the

network. In this section we attempt to distribute the outpatl among as many participating nodes.
In the partitioning (“rehash”) portion of a parallel haslinjosource tuples can be routed through

the network (using the DHFend), destined for the correct hash bucket on some node. As egbh is

forwarded along the path, each intermediate node intesdeysing the DHT upcall callbacks, caches a copy,
and annotates it with its local node identifier before fomhiag it along. When two tuples cached at the

800

700

600

500

400

300

Total Network Communication (MB)

100

0

200 |

54

T T T T
Sym. Hash Join —+—
Fetch Matches Join ---x---

B Sym. Semi-Join ---*--- -

Bloom Join & 4
B ‘va, —

'
L 4
I
i Ll X
. R
— /,/,*L"’_//X’ T - n
N * .
L - |
,’*” - B

R 7
vl =] n
¥
& . . | |
0 20 40 60 80 100

Selectivity of Table S (%)

Figure 4.18: Overall bandwidth usage for four join stragsgiith varying selectivity on table S.

Figure 4.19:

3
m
° 2.5
c
9]
[8)
)
n
K
Q
=3
=}
=]
<
S 1.5
o
—
)
ey
=
= 1
=
>
[5)
c
]
© 0.5
p

T T T T T T T
Sym. Hash Join —+—
Fetch Matches Join ---%---
I Sym. Semi-Join ------
U' i Bloom Join 7]
E . m m E] Ei ,,,,,,,,,, B -) o
IS " B ¥------- *;(
e Heono *oooo KoK R
oo Xo—o o E R O . e P T R P 3
1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Selectivity of Table S (%)

Latency till the 100th result for four join d&rgies with varying selectivity on table S.

55

100 FoT T 'Sym:. Hdsh Join™ —+—"" *
Hierarchical Sym. Hash Join ---x--- PR
— L 1 Bucket - Sym. Hash Join --->--- o .-~
é L 1 Bucket - Hierarchical Sym. Hash Join g
K =
o 10f x* E
2 C X
3 LT B
(0] .
2
= 1 2 E
< 3
(8] TR ===3
c
b
S
-
0.1 ol el e

1 10 100 1000 10000
Number of Nodes

Figure 4.20: Latency till the 100th result for a symmetristgoin with varying number of nodes.

same node can be joined, and were not previously annotatlkéwiatching node identifier, the join result is
produced and sent directly to the proxy. In essence, joultseare produced “early”, before matching tuples
have reached the node responsible for their respectivelhadtet. This could potentially improve latency
and shift the out-bandwidth load from the node responsiri@hash-bucket to nodes along the paths to that
node.

With respect to out-bandwidth load, the worst case scensgaused by a skewed workload that
only has one hash bucket which is therefore assigned to &siogle. The network bottleneck at that node
could be ameliorated by offloading out-bandwidth to noddsrig the way”. The in-bandwidth at a node
responsible for a particular hash bucket will remain theesaimce it receives every join input tuple that it
would have without hierarchical processing. Unfortunatelr results show this is not feasible.

In our experiments we show four different methods, the bagiemetric hash join, the hierarchical
symmetric hash join, and both methods when all tuples aigress$to the same hash-bucket to simulate the
worst-case workload. Figure 4.20 shows the the hierartimethods reduce the latency to under one second.
However, as shown in Figure 4.21, the decrease in latencgsatna significant increase in overall network
communication.

Hierarchical joins require sending the entire tuple to eamtte on the path to the hash bucket. In
the standard join the DHT only routes a small message alam@dth to discover the destination node and
then sends the payload directly to the node. The differemdbé size of the lookup message (about 124
bytes) and the entire tuple (between 1100 and 1620 bytesgdha significant increase in network traffic.

1800 ———rry — ——— T
Sym. Hash Join
Hierarchical Sym. Hash Join

1 Bucket - Sym. Hash Join ---
1 Bucket - Hierarchical Sym. Hash Join

1600

1400

1200

1000

800

600

400

Total Network Communication (MB)

200

1 10 100 1000 10000
Number of Nodes

Figure 4.21: Overall bandwidth usage for a symmetric hashvjith varying number of nodes.

57

Chapter 5
Multi-Query Optimization

In the previous chapter we described various methods fangixey a single aggregation query. We
showed that learning and optimizing the communication tnesr time improves latency, decreases overall
network communication, and more equally distributes in#imbnetwork communication. However, an im-
portant challenge in modern distributed querying is to &ffity process multiple continuous aggregation
gueries simultaneously. Processing each query indepéndeay be infeasible due to network bandwidth
constraints. We now focus on further decreasing overallokk communication through multi-query opti-
mizations which will utilize the single aggregation quergeution methods previously discussed.

In this chapter, we consider this problem in the context sfriiuted aggregation queries that vary
in their selection predicates. We identify scenarios inoliha large set of such queries can be answered
by executingt < ¢ differentqueries. The: queries are revealed by analyzing a boolean matrix cajgfurin
the connection between data and the queries that theyysatisi manner akin to familiar techniques like
Gaussian elimination. Indeed, we identify a clasdidar aggregate functions (including SUM, COUNT
and AVERAGE), and show that the sharing potential for suctrigs can be optimally recovered using stan-
dard matrix decompositions from computational linear bige For some other typical aggregation functions
(including MIN and MAX) we find that optimal sharing maps tetNP-hardset basigproblem. However,
for those scenarios, we present a family of heuristic atgors and demonstrate that they perform well for
moderately-sized matrices. We also present a dynamidtdistd system architecture to exploit sharing op-
portunities, and experimentally evaluate the benefits oteehniques via a novel, flexible random workload

generator we develop for this setting.

5.1 Overview

The goal of the algorithms we present in this chapter is toimmize overall network communi-
cation. During an aggregation query, each node must sendtial mate record (PSR) to its parent in an
aggregation tree. If there is no sharing, then we are comeating one partial state record (PSR) per node

58

per query per epoch. If we hayegueries, our goal is to only seidPSRs per node per epoch, whére« ¢,
such that thé: PSRs are sufficient to compute the answer tgyajlieries. The next section discusses the
intuition for how to select these PSRs.

5.1.1 The Intuition

Consider a very simple example distributed monitoring gxamnsystem withh nodes. Each of the
nodes examines its local stream of packets. Each packeh@tated with three boolean values: (1) whether
there is a reverse DNS entry for the source, (2) if the sowamia spam blacklist, and (3) if the packet is
marked suspicious by an intrusion detection system (ID8&g €duld imagine various applications monitor-
ing all n streams at once by issuing a continuous query to count théeuai global “bad” packets, where
each person determines “bad” as some predicate over treeftags. Here are example query predicates from
five COUNT queries over the stream of packets from all the ande

1. WHERE noDNS = TRUE
2. WHERE suspicious = TRUE
3. WHERE noDNS = TRUE OR suspicious = TRUE

4. WHERE onSpamBlackList = TRUE

5. WHERE onSpamBlackList = TRUE AND suspicious = TRUE

We use an idea from Krishnamurthy, et al. [44] to get an insighhow to execute these queries
using fewer than 5 PSRs. In their work, they look at the setuefriggs that each tuple in the stream satisfies,
and use this classification to partition the tuple-space itnmize the number of aggregation operations
(thereby reducing computation time). Returning to our fix@eple queries above, suppose in a single epoch
at nodei we have tuples that can be partitioned into exactly one ofdh@wing five categories:

1. Tuples that satisfy queries 1 and 3 only

2. Tuples that satisfy queries 2 and 3 only

3. Tuples that satisfy query 4 only

4. Tuples that satisfy queries 1, 3, and 4 only

5. Tuples that satisfy queries 2, 3, 4 and 5 only

We will refer to each of these categories asagment As a compact notation, we can represent
this as a [x ¢) boolearfragment matrix F', with each column representing a query (numbered fromdeft t

59

right) and each row representing a fragment:

Query 1] 1 Query 5
1 0 1 0 0] « Fragmentl
01 1 0 0
F=100010
1 01 1 0
10 1 1 1 1 «— Fragment 5

Now, suppose in a given epoch some naédeceives a number of tuples corresponding to each
fragment; e.qg., it receives 23 tuples satisfying queriesdl3aonly (row 1), 43 satisfying queries 2 and 3 only
(row 2), etc. We can also represent this as a matrix called

Al =123 43 18 109 13

Given the two matrices, we can now compute the local courthifirst query (the first column of
F) by summing the first and fourth entries 4y, the second query by summing the second and fifth entries
in A;. In algebraic formA] x F will produce a one-row matrix with each column representivegcount for
the respective query. Encoding the information as mattiis not more compact than sending the traditional
set of five PSRs (one for each query). However, if we can findlaged matrix4; — one with empty entries
that do not need to be communicated — such thiatx F = AT x F, we can save communication at the
expense of more computation.

This is indeed possible in our example. First, note thatfragt 4 is the OR of theon-overlapping
fragments 1 and 3 (i.e. their conjunction equals zero). Nabgerve the significance of that fact with
respect to computing our COUNT queries: when summing up thiats for those queries that correspond
to fragment 1 (queries 1 and 3), we can ignore the count ofrieag 3 since its entries for those queries are
zero. Similarly, when summing up the counts for queries lapging fragment 3 (query 4), we can ignore
the count of fragment 1. Because of this property, we canlaelddunt associated with fragment 4 ifimth

of the counts for fragments 1 and 3 without double-countinipe final answer, as follows:

AT =1 234109=132 43 18+109=127 109—0 13

Using this newA’, AT x F will still produce the correct answer for each query, evesutth A’ has more
empty entries. And since, has an empty entry, there is a corresponding savings inemktbandwidth,
sending only four PSRs instead of five. In essence, we onlg teexecute four queries instead of the
original five. The key observation is that the sizeAjfis equal to the number afidependent rows F', or
therank of F'; the exact definition of independence depends on the aggwadanction as we discuss next.
In all cases the rank af will always be less than or equal tein(f, ¢). Therefore we will never need more

thanqg PSRs, which is no worse than the no-sharing scenario.

60

5.1.2 Taxonomy Of Aggregates

The optimization presented in the previous section (base@Ring non-overlapping fragments)
works for all distributive and algebraic aggregate funtsigsee Section 4.2 for types of aggregation func-
tions). However, some distributive and algebraic aggeefiatictions have special properties that allow more
powerful solutions to be used that exploit additional shguapportunities. We categorize these aggregates
into three broad categoriebnear, duplicate insensitiveandgeneral These three categories map to differ-
ent variations of the problem and require separate solsitigve first discuss the taxonomy and then briefly
introduce our solutions.

Formally, we use the terifimear for aggregate functions whose fragment matrix entries fafiald
(inthe algebraic sense) under two operations, one usedfobining rows, the other for scaling rows by con-
stants. An important necessary property of a field is thattheinversedor all values under both operators.
Among the familiar SQL aggregates, note that there is norabitverse for MIN and MAX under the nat-
ural combination operator: given that= MAX (z, y), there is no uniqug—! such that MAXz,y~!) = z.
Hence these are not linear. Another category we consideiugléecate insensitivaggregates, which produce
the same result regardless of the number of occurrencespédafis datum. The table below lists a few

example aggregate functions for each category:

Non-linear Linear
Duplicate Sensitive k-MAX, k-MIN SUM, COUNT, AVERAGE
Duplicate Insensitive | MIN, MAX, BLOOM FILTER, | Spectral Bloom filters [15], Sef
logical AND/OR expressions with updates [23]

The intuition for why k-MAX and k-MIN (the multi-set of the ok highest/lowest datums) are
non-linear is analogous to that of MAX and MIN. k-MAX/MIN agdso duplicate sensitive since evaluating
each additional copy of the same highest datum would exgektth highest datum due to the multi-set
semantics.

Spectral Bloom filters are an extension of Bloom filters thestfka frequency associated with each
bit. The frequency is incremented when a datum maps to thadil can be decremented when a datum is
removed from the filter. This is linear because the frequencan be added/subtracted to each other and can
be scaled by a real number. In addition the output of the fistdrased on whether the frequency is greater
than zero or not, so counting the same datum twice may proaiudeflated frequency value but does not
change the output.

In Section 5.4 we address linear aggregates where thisgerotén be reduced directly to rank-
revealing linear algebra factorization of matfix and polynomial-time techniques from the literature digec
lead us to an efficient solution. For duplicate insensitygragates, we explain in Section 5.5 that the problem
is a known NP-Hard problem and has higher computational ¢texitp; in these cases we develop a family
of heuristics that we evaluate experimentally. Finally éggregates that are neither linear nor duplicate
insensitive, the most conservative optimization algonitimust be used. We stress that for both linear and

61

i Node 1
Queries Fragments
F_A, '
- Ay F

10100 [&

01100 [3.. 2 10100

060105 - " 01100

Tuples‘@ ‘ T) 00010
01111][> 1 : 10110

p—— 01111

(1) Fragmentation ~ (2) Decompose
: l Query

Answers

Node

. F Node n Lo
Queries ragFmeKts . q ‘
l 10100 oy = -5 g ;f'u) ia_’)
01100 [>,. = H
Tuples-® - ggil) 8 % ‘E : (4) Reconstruct < % i
REE - (3) Global Aggregation

(1) Fragmentation (2) Decompose

Figure 5.1: Tuples are first aggregated by fragment (1) idtzal A; PSR.F and A; are then decomposed
(2) to form A’. Each entry ind} is then aggregated over all nodes (3) in separate aggregate fThe final
global value for each entry id’ sent to some nodg Nodej can then reconstruct (4) the answers to every

guery and distribute the result.

duplicate insensitive aggregates, our solutions will neggquire more global aggregate computations than

the no-sharing scenario.
We now discuss the architecture and the general solutidriggtoblem.

5.2 Architecture

The general technique for performing our multi-query ojation has four phases. First at each
node,i, we need to create the initidl and A; matrices in thdragmentatiorphase. Second, we cdecom-
poseF andA; into a smallerd;. Third, we perform theglobal aggregatiorof all local A/’s across all nodes.
Finally, we canreconstructthe final answers to each query at some npddhis process is illustrated in
Figure 5.1 and described in detail below.

In the first phase, fragmentation, we are using the sameitpahipresented in [44]. Each tuple is
locally evaluated against each query’s predicates to uhitter on-the-fly which fragment the tuple belongs
to. We can use techniques such as group filters [55] to efflgiemaluate the predicates. Once the fragment
is determined, the tuple is added to the fragment’s cormredipg local PSR i4;.

In the second phase, decomposition, each node will locplyyathe decomposition algorithm to
F and A; to produce a smaller matri¥,. The specific decomposition algorithm used is dependeniien t
type of aggregate function being computed. In Section 5.preeent the basic algorithm that applies to all
functions. Section 5.4 shows an algorithm that can be usdoh&ar aggregate functions, and, in Section 5.5
we show a family of heuristic algorithms that work for duglie insensitive functions.

We require that every node in the system use the damatrix for decomposition. The& matrices
must be the same so that every entrydinhas the same meaning, or in other words, contains a piece of th
answer to same set of queries. Nodes that do not have ang fopke particular fragment will have an empty

PSR inA;. In Section 5.6.1, we explain how to synchroniZeon all nodes as data is changing locally; for

62

duplicate insensitive aggregate functions, we are abdintinate this requirement altogether

In the third phase, global aggregation, we aggregate eatteof,’s over all nodes in the system
to produce the globall’. Since we want to maintain the load balanced property of tresharing case,
we aggregate each entry/fragmentdn separately in its own aggregation tree. Once the final vaase h
been computed for an entry af’ at the root of its respective aggregation tree, the PSR istsemsingle
coordinator node for reconstruction.

The fourth phase, reconstruction, begins once the codatinade has received each of the globally
computedA’ entries. Using thé" matrix (or its decomposition) the answer to all queries carcémputed.
The reconstruction algorithm is related to the specific detroiction algorithm used, and is also described in
the respective sections.

We take a moment to highlight the basic costs and benefitsofibthod. Both the sharing and
no-sharing methods must disseminate every query to allsiot@lkis cost is same for both methods and is
amortized over the life of the continuous query. Our methdbduces the cost of having all nodes agree
on the same binary" matrix, the cost to collect all of thd’ entries on a single node, and, finally the cost
to disseminate the answer to each node that issued the dlieeybenefit is derived from executing fewer
global aggregations (in the third phase). The degree offtiéneependent on the data/query workload. In
Section 5.7 we analytically show for which range of scersatids method is beneficial.

5.3 Basic Decomposition Solution

Ouir first algorithm, basic decomposition, applies to allraggtion functions, and directly follows
the intuition behind the optimization we presented in thevjrus section. Our aim is to find the smallest set
of basis rows, such that each row is exactly the disjunctféwo or more basis rows that are non-overlapping
—i.e., their conjunction is empty. If the basis rows werevertap, then a tuple would be aggregated multiple
times for the same query.

Formally, we want to find the basis rows ihunder a limited algebra. Standard boolean logic does
not allow us to express the requirement that basis rows b@werlapping. Instead, we can define an algebra
using a 3-valued logic (with values of 0, 1, ahdor “invalid”) and a single binary operator called ONCE.
The output of ONCE is 1 if and only if exactly one input is 1. dth inputs are 0, the output of ONCE is O,
and if both inputs are 1 the outputis Using this algebra, the minimal set of rows which can be OBGCE
to form every row inF' is the minimal basis set, and our target solution. Thalue is used to prevent any
tuple from being counted more than once for the same query.

The exhaustive search solution is prohibitively expenssirece if each row ig bits there ar@2"
possible solutions. While this search space can be aggegsgiruned, it is still too large. Even a greedy
heuristic is very expensive computationally, since thermetotal 0f2? choices (the number of possible rows)
at each step — simply enumerating this list to find the loaafiiimal choice is clearly impractical.

To approach this problem, we introduce a simple heuristitdttempts to find basis rows using the

63

existing rows inF'. Given two rows; andj, if j is a subset of thenj is covering those bits inthat they
have in common. We can therefore decompiaseremove those bits that are in common. When we do that,
we need to alterl by adding the PSR fronis entry toj’s entry.

We can define a BcomPOSEOperation as:

DECOMPOSHEF, A;, i, j):
if (i # j) AND (—Fi]&F[j] = 0) then \\ ONCEF'[¢], F'[j])
F[i] = F[i] XOR F[j]
Ailj] = Alj) + Al
else returninvalid

A simple algorithm can iteratively applyEzomposeuntil no more valid operations can be found.
This decomposition algorithm, will transforii and A; into F” and A’

BASIC DECOMPOSITIONE, A;):
boolean progress = true
while progress = true
progress = false
for all rowsi € F
for all rowsj € F
if DecomposeX, A;, 1, j) # invalid
then progress = true
for all rowsk € A;
if |F'[k]| = 0then
A;[k] = 0\\ rows in F' with all 0's

Reconstruction is straightforward sindé” x F' = AT x F.

The running time of the basic decomposition algorithrig'?), wheref is the number of rows
in F. Since the basic decomposition is searching a small podidhe search space, it is not expected to
produce the smallest basis set. Furthermore, it is the dgbrithm we present that can produce an answer
worse than no-sharing. The algorithm starts wfithasis rows, wherg can be greater thap and attempts to
reduce the size of this initial basis. This reduction mayatafys be sufficient to find a basis that is smaller
than or equal tg (although one such basis must exist). In these cases wé teweq x ¢ identity matrix
which is equivalent to a no-sharing solution. However, #iisple algorithm does provide a foundation for

our other solutions.

5.4 Linear Aggregate Functions

If the aggregate function is linear, such as COUNT, SUM, oERAGE, we are no longer con-
strained to using the limited algebra from the previousisaecinstead, we can treat the matrix entries as real

64

numbers and use linear algebra techniques akin to Gauskmim&tion, adding and subtracting rows i
from each other, and multiplying these rows by scalars. @al gf reducing the size aofl; can therefore
be accomplished by finding the minimal set of linearly indegent rowsF” in F', or the rank ofF’. By
definition F' can be reconstructed frofi, so we can creatd) from A, at the same time and still correctly
answer every query during the reconstruction phase.

For example, suppose we are calculating the COUNT for thesegfieries with thiss" and 4;

matrix: i i i i
1 1 0 1 1 13
1 01 1 0 54
F=101110|A=]|2
1 1.0 0 O 78
|1 1 1 1 0| | 32 |

The answer to the first query (in the leftmost column)3s+ 54 4+ 78 + 32 or 177. The complete solution
matrix can be computed usingfl x F'.
It turns out that we can expressand A; using only four rows:

11 1 1 0 177
o 01 1 1 0 A= -30
00 -1 -1 0 37
00 O 1 1 13

Using I and A/ we can still produce the correct solution matrix, usitf x £”. In this example
we used Gaussian Elimination énto find the smallest set of basis rows. We will now discuss rmgolve
this problem using more efficient algorithms.

In numerical computingank-revealing factorizationare used to the find the minimal set of basis
rows. We will apply three well-studied factorizations ta uoblem: the LU, QR, and SVD decompositions.
These algorithms will decompodé into two or more matrices that can be used in local decomipaodio
transformA; into A, and then to reconstruct’ into the query answers at the coordinator node. These
factorization methods and their implementations are waltlied in the numerical computing literature [6].
We now present formulations for utilizing these factoringthrods.

An LU algorithm factorsF' into a lower triangular matrix, and an upper triangular matrix such
that L x U = F. In the decomposition phase we can fathusingA] x L and remove any entries iA/
whose corresponding row iii is composed of all zeros. Reconstruction at the coordirisgmply A’ x U.
We can safely remove the entriesAl) whose corresponding row ih is all zeros because in reconstruction
those entries will always be multiplied be zero and thus deantribute to any results. During reconstruction
we insert null entries iM’ as placeholders to insure the sizeAdfis correct for the matrix multiplication.

Using QR factoring is very similar to using LU. In this caske tQR algorithm factorg” into a
general matrixQ and an upper triangular matri® such thatQ x R = F. We form A’ using AT x Q

65

and remove any entries id;, whose corresponding row iR is composed of all zeros. Reconstruction is
accomplished using’ x R.

SVD factorsF into three matriced/, S, andV . A’ is formed in decomposition using x U x S.
Using this method, we remove entries frofh whose corresponding row ii is zero. Reconstruction is
accomplished by computing the product.4f and V. With all three algorithms, the factorization &f
is deterministic and therefore the same on all nodes, aligwis to aggregatd’s from all nodes before
performing reconstruction.

These algorithms all have a running time@fm x n?) wherem is the size of the smaller dimension
of F' andn is the larger dimension [6]. In addition, all three methodsild be optimal (finding the smallest
basis set and thus reducidgand A; to the smallest possible sizes) using infinite precisiortifigapoint
math. However, in practice these are computed on finiteigiogccomputers which commonly use 64 bits to
represent a floating point number. Factorization requiezfopming many floating point multiplications and
divisions which may create rounding errors that are furéixacerbated through additional operations. While
LU factorization is especially prone to the finite precispmoblem, QR factoring is less so, and SVD is the
least likely to produce sub-optimal reductionsAfis size. Due to this practical limitation, the factorizatio
may not reach the optimal size. In no case will any of theserdlgns produce an answer that requires more
global aggregations than the no-sharing scenario. Iniaddthese rounding error may introduce errorslin
and therefore perturb the query results. However, theseidigs, in particular SVD, are considered robust
and used in many applications.

5.5 Duplicate Insensitive Aggregate Functions

The previous algorithms preserve the invariant that eagle tilhat satisfies a particular query will
be aggregated exactly once for that query. However, someegate functions, such as MIN and MAX,
will still produce the same answer even if a tuple is aggegjatore than once. We can take advantage of
this property when decomposirfg and achieve a higher communication savings compared torévéops
algorithms. Consider this simple example:

11011
11011

10110
, |1t o110

F=|01110|F-=

01 110

11000
1100 0

11110

We natice that the fifth row of is equal to the OR of the second and third (or second and fourth
or third and fourth). Thus we can define a matfik that removes this redundant row. The corresponding
operation to thed matrix is to aggregate the fifth entry with the second eniygragate the fifth entry with
the third entry, and then remove the fifth entry. Intuitivehis is moving the data from the fifth fragment to
both the second and third fragments.

66

Similar to the previous sections, the goal is to find the mummmumber ofndependent rowsBut
in this case, the independent rows are selected such thratalin /' can be obtained by combining rows in
the basis using only the standard OR operation, rather ttNDED

This problem is also known as tlset basisor boolean basiproblem. The problem can be de-
scribed succinctly as follows. Given a collection of séts= {51, .5,...5}, a basisB is defined as a
collection of sets such that for eadh € S there exists a subset &f whose union equalS;; the set basis
problem s to find the smallest such basis set. Our probleheisame, wherg = rows of F' and B = rows of
F'. The set of possible basis set@% wheren is the number of elements [j S. This problem was proved
NP-Hard by Stockmeyer [73], and was later shown to be inapprable to within any constant factor [52].
To our knowledge, ours is the first heuristic approximatilgoathm for the general problem. In [51] Lubiw
shows that the problem can be solved for some limited clagsésmatrices, but these do not apply in our
domain.

As with the general decomposition problem in Section 58 starch space of our set basis problem
is severely exponential ilp To avoid exhaustive enumeration, our approach for findiegiinimal basis set,
F’, is to start with the simplest basis set; a ¢ identity matrix (which is equivalent to executing each quer
independently), and apply transformations. The mosttirutransformation is to OR two existing rows in
F’, i andj, to create a third rovi. Using this transformation (and the ability to remove roven I’ one
could exhaustively search for the minimal basis set. This@gch is obviously not feasible.

We apply two constraints to the exhaustive method in ordendake our approach feasible. First,
after applying the OR transformation, at least one of thet@g rows; or j, is always immediately removed.
This ensures that the size of the basis set never increasesn@& we maintain the invariant that after each
transformation the set is still a valid basisiof

We can now formally define two operationg, YD and G LLAPSEwhich satisfy these invariants.
Given a matrixF" and a basi¢” for F', both operations overwrite a rof¥’ [i] with the OR of rowF"[:] and
another rowF”[j]. CoLLAPSEthen removes row from F’, whereas BEND leaves rowj intact. After per-
forming one of these operations, if the néWstill forms a basis fo’ then the operation is valid; otherwise
the originalF’ is kept.

CoLLAPSE is the operation that achieves a benefit, by reducing thedSitee basis set by one.
CoLLAPSE is exploiting the co-occurrence of a bit patternfin However, it may not be valid to apply
CoLLAPSE until one or more BEND operations are performed. The intuition for this is that witee bit
pattern in some input row can be used in multiple basis rongN® preserves the original row so that
it can be used as, or part of, another basis row. Consideixm@afrand the followinginvalid COLLAPSE

transformation:
0 1 1 1 1 0 0 O
1 0 0 1
1 0 0 1 , 01 0 0
F= = —10 1 0 0
1 1 1 1 0 01 0
0 010
01 0 1 0 0 0 1

We cannot directly ©LLAPSE rows one and four ik’ as shown above. The resultiftg is no longer able to

67

reconstruct the first or fourth rows i via any combination of ORs; we call such a transformatioalid.
However, if we first BEND rows two and four (leaving row four), we can themQ APSE rows one and
four, as shown next:

1000 100 0
100 1

S lo 100 010 1
F'= — —10 1 0 1

0010 0010
0010

0001 000 1

Using these two operations we can search a subset of thdl®esnah space for the minimal basis
set. A simple search algorithm, callech®c CompPOSITION, performs BEND or COLLAPSE in random
order until no more operations can be executed. The pseod®is shown below:

BAsIC COMPOSITION(F)
F’ = gxq identity matrix
boolean progress = true
while progress = true
progress = false
for all rowsi € F’
for all rowsj € F’
if 7 # j then
if COLLAPSE (F, F',i,) #invalid then
progress = true
break to while loop
if BLEND (F, F”, 1, j) #invalid then
progress = true
break to while loop

A’ can be calculated by aggregating together each elemefi that corresponds to a row iR
which is equal to or a superset of tH¢ entry’s corresponding” row.
There are three key limitations of this algorithm:

e Once an operation is performed it can not be undone: bothatipaes are non-invertible and there is no
back-tracking. This limits the overall effectiveness ofifing the minimal basis set since the algorithm
can get trapped in local minima.

e The random order in which operations are performed can m@ierthe quality of the local minimum
found.

e At any given point there ar@(f?) possible row combinations to choose from. Finding a val@. €
LAPSEOr BLEND is time consuming.

68

In effect, the algorithm takes a single random walk through ltmited search space. For some
workloads, the optimal solution may not even be attainabile this method. However, while this heuristic
algorithm gives no guarantees on how small the basis sebwijlit will never be worse than the no-sharing
solution. We will show in Section 5.8 that this heuristic fiea able to find 50% of the achievable reductions

in the size of the basis set, but its running time is extrertaiy.

5.5.1 Refinements

Our first refinement takes a slightly different approachtdad of optimizing every query at once,
we incrementally add one query at time optimizing as we g fivo key observations are (1) that a valid
covering forg — 1 queries can cover queries with the addition of a single row which only satisftes new
query and (2) the optimal solution fgrqueries given an optimal basis solution fpr- 1 queries and the
single basis row for theth query will only have up to one valid@ LAPSE operation.

Using these observations we can define tteDACoOMPOSITION algorithm which incrementally
optimizes queries one at a time:

ADD COMPOSITIONF, F, start)
Require: F’" hasstart columns
let ¢ = the number of queries\ columns inF
let f = the number of row§\ rows in F”
for ¢ = start + 1 upto ¢
ExpandF’ to (f + 1) x ¢ with 0’s
F'lf+1][=1
F. = Projectf,c) \\ See Following Algorithm
OptimizeE.,F’,f + 1)
return F’

PROJECT(S, columns)
for all rowsi € S
forall colsj € S
if 7 <columns then
S"[i)[31=SEllj)
elseS”[i][j]=0
S’ = unique rows inS”’
return S’

The OpTIMIZE step in ADD COMPOSITIONIS very similar to the repeat loop inA1c COMPOSH
TION. It has asearch looghat continues looking for combinations of rows that can$edin a ©LLAPSEOr
BLEND operation until there are no such combinationeTIzE has two key improvements over the B
sic CoMPOSITION First, COLLAPSES and B.ENDs are not considered if they combine two old (optimized)

69

rows. Second, since only one row was adde#@tponce a ©LLAPSE s performed the optimization is over
and the search loop is stopped, since no additiomall@pPses will be found. As shown in Section 5.8 this
method is considerably faster and still equally effectitvérading a small basis set compared to thesBc
ComposiTIiONalgorithm.

We consider three dimensions for search loop strategies:

e Number of operations per iteration:

— O: Perform only one operation per search loop and then rek<bbp from beginning.

— M: Perform multiple operations per search loop only restgrdifter every combination of rows
are tried.

e Operation preference:

— A: Attempt CoLLAPSEfirst, but if not valid attempt BEND before continuing the search.

— R: Perform all @LLAPSEsS while searching, but delay anyLBNDs found till the end of the

search loop.

— S:First search and perform onlydC LAPSEoperations, then search for and perform angBDs.
This requires two passes over all row pairs per loop.

e Operation timing:

— W: Execute operations immediately and consider the new romédrin the same loop.

— D: Execute operations immediately but delay considering #ve row for additional operations

till the next loop.

— P: Enqueue operations till the end of the search loop and thecués all operations.

The Basic CoMPOSITION algorithm shown uses the O/R strategy. The algorithm persaone
operation per iteration of the outer loop. So after eachatpar, it will begin the search again from the be-
ginning. The algorithm favors @.LAPSE by attempting that operation first. The operator timing disien
is not relevant for strategies that only perform one opengpier iteration. Note that theaBic CoOMPOSK
TION can be modified to use any of the possible search strategiise Evaluation section we only show the
strategy that performed the best in our experiments, M/A/W.

There are only twelve search strategies possible usinghtiee limensions evaluated (when per-
forming only one operation per search loop, operation tingnot relevant). All twelve are experimentally

evaluated in Section 5.8.

5.6 Practical Matters

In this section we discuss how we ensure that every node basthect/” matrix, whether through
explicit or implicit communication, and its associatedweatk overhead. We then discuss how to extend our

70

methods to work for a larger class of complex queries.

5.6.1 SynchronizingF’ Across the Network

In order to ensure the PSRs iff that are communicated from one node to another are correctly
decoded we must guarantee that every node has theSanagrix. Otherwise, during the global aggregation
or reconstruction phases, the PSRsdhmay be incorrectly aggregated causing the query result®to b
wrong. This is very important for correctness of some deawsiijpn algorithms such as the linear algebra
routines LU, QR, and SVD. For the other decomposition athors presented there is an optimization to the
architecture that eliminates this requirement. We firstdbe a simple method for ensuring all nodes have
the samer” and then describe the optimization.

At the end of every aggregation epoch (after the node hasatetl all the raw data necessary to
compute the aggregates for that epoch) each npdemputes its local’ matrix, F;. Since each node may
have a different distribution of data, the mat#fk at node: may differ from matrixF; at nodej # i. The
global I is the set union of the rows in all locéal’s.

This can be computed like any other aggregate using a trdehé\leaves of the tree send their
completeF; to their parents. Their parents compute the union over alt tthildren, and send the result to
their parent. At the root of this aggregation tree, the gldb& computed. The globadl is then multicast to
every node on the reverse path of the aggregation tree.

For subsequent epochs only additionsitaneed to be transmitted up or down the aggregation
tree. Deletions can also be propagated up the aggregatienhowever any node along the path can stop
the propagation (which prevents a change to the glébaf it has at least one other child (or itself) still
needing that row. The addition or deletion of a query wilbathangel”. Query (column) deletions require
no communication (every node simply removes the columiforThe addition of a query (column) affects
every row inF', but in a limited fashion. Each row is either extended with a 0, or both (which requires
duplicating the old row). This can be compactly transmitésda modification bitmap with two bits per
existing row. The global modification bitmap is the OR of gueode’s individual modification bitmap which
can also be efficiently computed as an aggregate.

Once all nodes have the glokid) the general computation of the query aggregates can bE(gis.
synchronization method has the negative effect of delagihgesults for at least the duration of one global
aggregation plus one global multicast. In practice, thealaelay must be sufficiently long to accommodate
worst case delays in the network.

The exact communication cost of this method is dependerti@query/data workload. However,
given a constant set gfqueries and a set of nodes, we can show the worst case cost of synchroniZing
for each additional bitmap, and for how many epochs the systest remain unchanged to recoup the cost.

The worst case communication cost occurs if at least evafyiede in the aggregation tree requires
the addition of the same new row in a given aggregation epéchhis situation every node will need to
transmit the new row i’ up and down the aggregation tree which yields a co8t»fn x ¢ bits per row. If

71

only one node requires the new row the cost is roughly ¢ + log(n) x ¢ as only one node is sending data
up the aggregation tree.

Assume the size of each PSRpibits. The savings realized from sharing will never be leasitine
eventual total gainG7;. During each epocl{l — G;) x ¢ aggregates are being computed insteaglaqieries
in the no-sharing scenario, for a benefit @f — (1 — G) x ¢) x p) x nor G¢ x ¢ x n X p bits per epoch.

We reach the break-even point af@t% = %Xp epochs. If multiple rows must be added at the same

time, the number of epochs till the break-even point ina@easoportionally.

The basic decomposition and the algorithms for duplicagerisitive aggregates do not require a
global F' and can avoid the associated costs. Instead, it is suffibemnotate every entry id’ with its
corresponding binary row if”. Since every aggregation tree is required to have an iden{gich as a
query identifier) to distinguish one tree from another, thsi®row entry can be used as the identifier. This is
possible since the reconstruction phase does not any esagliitional information about the decomposition.

While this optimization does not apply to linear aggregé#tese are other techniques that could be
considered. For some query workloads a static analysi®aftlery predicates may be sufficient to compute a
superset of’". This can be further extended to handle the actual dataldison by having nodes compactly
communicate which portions of the data space they have. Ve la complete analysis of this optimization
for future work.

5.6.2 Complex Queries

Our query workload to this point might seem limited: sets@ftinuous queries that are identical
except for their selection predicates. In this section weeolke that our techniques can be applied to richer
mixes of continuous queries, as a complement to other nultiqoptimization approaches.

For example, [46, 44] discuss optimizing sharing with geethat have different epoch parameters.
Their methods partition the stream into smaller epochs ¢hatlater be combined to answer each of the
queries. One can view the epoch-share optimization as gaenyting, producing a set of queries with the
same epoch parameters, which are post-processed to grapewer each specific query. In that scenario,
our technique is applied to the rewritten queries. Simjlagueries with different grouping attributes can
also be optimized for sharing. In that case, the smallestggbeing calculated would be treated as separate
partitions of the data that are then optimized separatelgurytechniques. After processing the results can
be rolled-up according to each queries specification.

Our approach does not depend on a uniform aggregation ex@nescross queries. Queries that
include multiple aggregate functions, or the same funcbieer different attributes, or queries that require
different aggregate functions can be optimized as one irapproach — as long as the same decomposition
can be used for all the aggregate expressions. In these tas@SR contained iA or A’ is the concatenation
of each PSR needed to answer all aggregate functions. Ie tases where different decompositions must
be used (e.g., one function is a MAX and another is a COUNT) they can be separately optimized and
executed using our techniques.

72

Our results show that there is a clear choice of which optition technique to use for most classes
of aggregate functions. However, if a function is both lireead duplicate-insensitive, it is unclear which tech-
nigue to apply. While few functions fall in this category€sgection 5.1.2), for those functions the selection
of algorithm will be dependent on the specific workload. Gleerizing the tradeoffs among workloads for
these unusual functions remains an open problem.

5.7 Potential Gains

Before we evaluate the effectiveness of our techniquesrexpatally, we explore the analytical
qguestion of identifying query/data workloads that shoelad to significant beneficial sharing, and quanti-
fying that potential benefit. This will provide us a framewdor evaluating how close our “optimization”
techniques come to a true optimum. In this section, we shawttiere are cases where sharing leads to
arbitrarily high gain, given a sufficient number of queri&¥e present two constructions, one designed for
duplicate insensitive query workloads, the other for degik sensitive workloads. Our goal is to construct a
workload that maximizes the sharing or benefit potential.défne the total gairG:; as:

G, =1 — (# aggregates executed# queries answergd
We also define the fragment gain which is the gain over comguwach fragmeng as:
Gy =1 — (# aggregates executed# fragment}

The total gainG,, is the most important metric, since an effective decontfprsalgorithm can
translate this sharing potential into a proportional ami@fimetwork bandwidth savings. The fragment gain,
Gy, is the benefit over computing every fragmentin

5.7.1 Duplicate Insensitive

To maximize the sharing potential we start witbase querie, bo, b3, ...by) and data that satis-
fies every conjunctive combination of thejueries({b:1 }, {b2}, {b3}, ...{b1, b2},
{b1,b3},...{b1, b2, b3, ...bp }) such that we have’ — 1 fragments (the-1 is for data that satisfies no queries).
At this stage, no sharing is beneficial since angggregates are actually needed (one for each query).

Using the initialb queries, we can write an additior2l — 1 — b queries by combining them via
disjunction i.e. queryx matches data that satisfies quéryandb,, queryy matches data satisfyirfg or
b3, etc. One such additional query is outlined in Figure 5.2(a)his case there aZ® such combinations
from which we subtract the originalqueries and the combination that is the disjunction of thptgreet of
gueries. The additional queries do not introduce any aatditifragments.

These new2” — 1 — b queries can be answered if we have the answers to the origmaries.
Since the aggregate functions we consider here are duplitsgnsitive, the disjunction of multiple queries
is simply their aggregation. So if we compute the aggredatebe originalb queries, we can clearly answer

73

b,uc,Uc,

®
o
D

() ’ (b)

Figure 5.2: Example Venn diagrams for duplicate insersitonstruction (a) and the duplicate sensitive
construction (b). In (a) the additional quéryU b is outlined. In (b) the additional queby U ¢; U ¢o is
outlined.

the originalb queries plus the ne®” —b— 1 queries for a total 02* — 1 queries. Thusi:, = Gy = 1— 2%1
As b — oo the gain approachdswhich is maximal.

The intuition behind this construction is that queries #ratthe disjunction of other queries lead to
sharing opportunities. While the firstbase queries have significant amounts of overlap, the qveréates
additional fragments because each query has a unique settolfiimg data. It should be noted that none of
the2? — 1 fragments created from tthébase queries are actually used to answer any queries,dribgsbase
queries are computed directly and used to compute the addift® — 1 — b queries. This is only possible
because the aggregation functions are duplicate insemaitid the overlap in data between thzase queries
does not affect the answer for the additional queries.

Furthermore, it is not necessary that thease queries are explicitly requested by users. If only
the additional queries were issued, those queries colilbstanswered using justglobal fragments. This
means that the gain is realized when the query set is justishendtion of a smaller number of overlapping
fragments.

5.7.2 Duplicate Sensitive

This construction is similar to the previous constructieiih b base queries arf — 1 fragments.
Now we addec non-overlapping queries such that data that satisfies otieeefqueries and does not match
any other query (from or ¢). Thus, there are additional fragments for a total éf+ ¢ fragments.

We now add®2¢ — 1 — ¢ additional queries based solely on theon-overlapping queries by taking
the disjunction of every possible combination of thgueries. These queries can be answered by aggregating
the answers from the originalqueries. Note, this does not count any tuple twice since: tipeeries were
non-overlapping.

Finally, we add2° — 1) x (b) more queries by taking the disjunction of every possiblelzio@tion
of the ¢ queries and exactly one query from thdase queries. For example, we takeU by, ¢o U bo,
c1 Uco Uby ande; U e U be, etc. One such additional query is outlined in Figure 5.28xce each of these
additional queries is only the disjunction of one query friarthere is still no overlap, so no data is counted

74

multiple times.

In summary we havé + ¢ + 2¢ — 1 — ¢+ (2¢ — 1) x b queries which could be answered using
b + c fragments. This leads to a total gainlof 27;’% and fragment gain of — le’_ﬁic. Asb andc
approach infinity, the total and fragment gains appraaeinich is maximal.

Intuitively, the ¢ queries are the source of sharing, since we are able to ochstany additional
queries that are the disjunction of multiple basgueries. Theé queries are the source of the fragment gain,
since the overlap they create increases the number of fragrtteat are not needed.

5.8 Experimental Evaluation

In this section we evaluate the performance of the variogsmgosition methods we have pre-
sented. Rather than focus on a specific workload from a spiéeibpplication, we pursue an experimental
methodology that allows us to map out a range of possible lvads, and we evaluate our techniques across
that range.

We present a random workload generator based on our anafykis gain potential in the previous
section. This generator allows us to methodically vary tée arameters of interest in evaluating our tech-
nigues: the workload size, and the degrepatentialbenefit that our techniques can achieve. Within various
settings of these parameters, we then compare the relast®and benefits of our different techniques. After
describing our workload generator, we present our experiahsetup and our results.

5.8.1 Workload Generators

We designed a workload generator that allows us to inputdéséred sizeand total gain for a
test ' matrix. By controlling the total gain we are able to test tiffeciveness of our algorithms. Using
the combination of the two knobs we can explore various veai#ts. We have two generators, one for
duplicate sensitive aggregates and one for duplicate sithenaggregates, that create tésmatrices. The
constructions from the previous section are used to devubkge generators.

For the duplicate insensitive generator we can calcula&atimber of basis rows, the number of
fragments,f, and the number of querieg, based on the desired matrix size and gain. Each ob thesis
rows maps to one of thebase queries in the constructor. Instead of generatinf all 1 fragments, we
uniformly at randomly select thgé fragments from the set of possible fragments. Analogousdyuniformly
at random select unique additional columns (queries) fioenset of up t@? — b — 1 possible additional
gueries. The generation is finalized by randomly permugatie order of the rows and columns.

This construction gives us a guarantee on the upper bourtdganinimum number of basis rows
needed). The optimal answer may in fact be smaller if the rows setkfitem the set o2® — 1 can be further
reduced. Since the rows are chosen randomly, such a redigtiolikely. In our experiments, we attempt to
check for any reduction using the most effective algorithwashave.

The duplicate sensitive generator works much the same pexdth the addition of the: basis

75

rows. The additional columns (queries) are generated bypy@Rirandom combination of thebase queries
and up to one of thé base queries. Values for the numbeba@ndc queries are randomly chosen such that
their sum is the desired number of basis rows and suchvtisdarge enough to ensure enough bitmaps can
be generated andis large enough that enough combination of queries can bergtsd.

Also note that the original (andc) queries remain in the test matrix for both generators; @vhil
this may introduce a bias in the test, we are unable to rentfmaetqueries and still provide a reasonable
bound on the optimal answer. Without knowing the optimalwarst is hard to judge the effectiveness of our

algorithms.

5.8.2 Experimental Setup

We have implemented in Java all of the decomposition algmst presented in the previous sec-
tions. Our experiments were run on dual 3.06GHz Pentium /XB83Mhz FSB) machines with 2GB of
RAM using the Sun Java JVM 1.5.06 on Linux. While our code nsak@ specific attempt to utilize the dual
CPUs, the JVM may run the garbage collector and other mantantasks on the second CPU. All new JVM
instances are first primed with a small matrix prior to anyitignto allow the JVM to load and compile the
class files.

Furthermore, we have also implemented our techniques onftBER. Three operators, a frag-
mentation, deconstruction, and reconstruction operaters added. This has enabled us to verify the benefits
of our approach in a realistic setting, over a large-scawibuted query processing engine.

For the LU/QR/SVD decompositions we utilize the JLAPACKréby, which is an automatic trans-
lation of the highly optimized Fortran 77 LAPACK 2.0 libraty/e also tested calling the Fortran library from
C code. Our results showed that the Java version was abosathe speed for the SVD routines (in fact
slightly faster in some instances) while the more optimiz&dand QR routines were about twice as slow
on Java. Overall, the runtime differences are minor and dcefiect our conclusions on relative speed or
effectiveness so we only present the results from the Jagiowe

We employ three key metrics in our study:

o therelative effectivenes@vhich is equivalent to the relative decrease in-netwonkdvadth used for
computing the aggregates)

e therunning timesof the decomposition routine
e theabsolute sizef the resulting matrix4” which is directly proportional to the network bandwidth

In particular, the relative effectiveness is based on tkaltiag size ofA’, the estimated optimal
answerk and the number of querigs Itis defined agq — | A’|) + (¢— k) or the ratio of attained improvement
to that of an optimal algorithm.

We vary the ratio of the number of fragments to queries (Wwéretihe test matrix is short, square,
or long) from1/2 to 2. We repeat each experiment 10 times with different testioestiof the same charac-

76

teristics (size and total gain); the results presenteddethe average and plus/minus one standard deviation
using error-bars.

5.8.3 Results

We first present the result from the linear decompositionrtigms, which prove effective and fast
for linear aggregates. Next, we show results for the duggigasensitive heuristics where we highlight the
best and worst performing variants. Finally we discuss éselis for the basic decomposition algorithm.

Linear Aggregates

Our first set of experiments evaluate the linear aggregatendpositions using the duplicate sensi-
tive workload generator. In Section 5.4 we noted that LU, @R} SVD can be used to compute4d They
differ in their running times, and in practice there is a anmcthat numerical instability (via rounding during
repeated floating-point arithmetic) can cause the teclsitpiincorrectly solve for the basis, and produce an
inefficient F’. Figure 5.3 shows the resulting size 4f, the overall effectiveness, and the running time for
the three algorithms using square matrices (500 queriés30id fragments).

QR and SVD give always optimal results by finding the loweskrand therefore the smalledt.

LU lagged in effectiveness due to sensitivity to precisiamtations, with low effectiveness for matrices that
had small potential gain and near optimal effectivenessfatrices that had high potential. As expected, LU
and QR are substantially faster than SVD in our measurenbgrabout an order of magnitude. Figure 5.4

shows that runtime increases polynomially(¢*)) as the size of the test matrix is increased.

| F Size | Algorithm | A'size | % Effective| Runtime (ms)]|
250x500] LU 346.6 (164.1)| 53.3% | 884.8(205.0)
250x500 QR 250.0 (151.8) 100% 1057.6 (24.1)
250x500] SVD | 250.0 (151.8)| 100% | 9989.5 (545.5)
500x500] LU 3456 (164.0)] 485% | 689.3(159.6)
500x500 QR 250.0 (151.82) 100% 702.15 (81.48)
500x500 SVD 250.0 (151.82) 100% 6931.0 (431.0)
750x500 LU 235.6 (35.4) 83.4% 577.5(306.4)
750x500| OR 175.0 (56.6) | 100% 452.7 (81.0)

750x500 SVD 175.0 (56.6) 100% 3170.5(311.9)

Table 5.1: Data for all linear algorithms averaged overa#ltgains for each particular matrix size. Standard
deviation shown in parentheses.

In general, we found that the trends remain the same wherm#peof the test matrix is changed.
These results are summarized in the Table 5.1. QR and SVDOnmeaptamal and LU has an overall effective-
ness ranging from 50-85%. As expected, the running timegase for matrices with additional rows and
decrease for matrices with fewer rows.

In summary, QR achieves the best tradeoff of effectivenedssaeed. While SVD has been de-

signed to be more robust to floating point precision limitR ®Was able to perform just as well on this type

77

600 T T T T
LU ——
QR -

n 500 I L SVD

c

S

8

3 400 | R

£

o

o

Q

< 300 E

j=2)

o

S

< 200 B

<

Qo

=)

© 100 | g

0 1 1 1 1
0 20 40 60 80 100
Total Gain Achievable in Workload (%)
@
8000 T T T
7000 | TR E
ooy E SRR J
6000 - E

% 5000 B

E

2 4000 - E

g

=]

@ 3000 B
2000 B
1000 E

0 1 1 1 1
0 20 40 60 80 100
Total Gain Achievable in Workload (%)
(b)

Figure 5.3: For 500x500 test matrices: (a) shows the regudlize ofA’. The solid line at y=500 represents
the starting size and the lower solid line represents opti@R and SVD are always optimal and precisely
overlap each other and the lower solid line. (b) shows theingitime for each.

140000 . . : . i : :
LU —+—
QR —x—-
120000 | SV
100000 |
g
E 80000 p |
g o
£
€ 60000 |
x .
40000 * |
20000 x |
x 0004_)(,////
0 (ORES Lka s "..M

0 200 400 600 800 1000 1200 1400
Number of Queries

Figure 5.4: The running time as the size of square matricesareased.

78

of binary matrix. LU has no benefit, since it is just as fast & Qut not nearly as effective in finding the
lowest rank.

Duplicate Insensitive Aggregates

Our second set of tests evaluate the composition family ofisiics using the duplicate insensitive
workload generator. In Figure 5.5 we show the results. Faritg] we include a representative selection
of the algorithms, including the &ic CompPosITION and the /oD COMPOSITION using five strategies
(O/R, M/AIP, M/IA/ID, M/A/W, and M/R/W). The strategies for#o CompPosITIONwere chosen since they
include: (1) the best strategy when used withsBc CoMPOSITION, (2) the worse performing, (3) the best
performing and (4) two strategies similar in technique te best performing. The strategies not shown
have similar shaped curves falling somewhere in the spactrutlined by those shown. The results for all
algorithms are summarized in the Table 5.2 and have sinfilgved curves falling somewhere in the spectrum
outlined by those shown.

The results show thatBo ComposiTiONwith the M/A/P search strategy is both the most effective
and fastest, although not much more effective than with tfiesirategy (which is substantially slower). This
is somewhat surprising given how different the M/A/P and GiiRtegies seem. Also note that in most cases
the relative effectiveness and the running time are inleis@related. This indicates that some algorithms
spend a lot of time searching and producing little benefit.

As explained in Section 5.5 the gain is revealed through theL@rse operation. However, before
CoLLAPSE can be performed often a number of BND operations are needed before aLCAPSE can be
used. Search strategies that search for bathL@pPse and BLEND at the same time tend to do better than
strategies that search for more and mor& BDs after each other.

For example the M/S/W search strategy will first search fgnaossible ©LLAPSEOperations, and
then search for BEND operations separately. As an operation is performed thétires row is considered
for further operations in the same search loop. Even thoumh €rsEs are performed beforelBNDS, once
the strategy begins performing.BNDs it will continue to exclusively perform them until no morarcbe
found. As a result, it gets stuck in this phase of the searop.l&Even worse, it performs so many B\D
operations that they block futuredCLAPSE operations and find a poor local minimum. This strategy often
finds a local minimum and ends after it executes only two a¥dtsearch loops.

In contrast, the O/R and M/A/P strategies are quick to sefmrcimore GLLAPSE operations after
performing any operation. In the case of M/A/P, all possiigierations with the given set of rows is computed,
and they are then executed without further searching. Whggends to need many search loops, the strategy
will not get caught in a long stretch oftBNDs. In the case of O/R, after every operation the search loop
ends, and the search restarts. This strategy preventsgysttick in the BEND phase, but also wastes time
continually searching the same portion of the search spaeeand over again after each operation. This
causes the OR strategy to be considerably slower than théf\&t#ategy.

Figure 5.6 shows the running times of the fastess 8 ComposiTIoNand ADD COMPOSITION

79

120
» 100 -
= S
K]
s
3 80F i
£
o
o
Q
= 60 B
(=)
4
3
< 40 |
©
Q
o
© 20} |
0 1 1 1 1
0 20 40 60 80 100
Total Gain Achievable in Workload (%)
@
100
90 B
® 80 - | 1 E
£
= e
& 0|7 1
g -
S 60 * o e
S sol Faol ¥ - e
P I [l Ty
o 4 | F g g @ » E
c T Ok
2 bl T i
2 ||;.,,_./_/|f«~*
= ! [i
w 20 - H i N B
10F 1 = B _ B o E
- RRDEE T R S S
0 o4 4 ? 4 i 2 I
0 20 40 60 80 100
Total Gain Achievable in Workload (%)
(b)
100000 T T T T
i : B Add-MAP —+—
90000 | [Add-OR ---x---
AT Add-MAW %
L L/ 4 . Basic-MAW g |
80000 R 9. Add-MAD —-m-
70000 oo 1 TAdd-MBR/ ---o--
S AN N R S
g 60000 | é/,,"\ //1‘ \\“,_i—//*/ \.\J \ : i
e ¢ A B N
g 50000 SRS S B AR # 7
B Trod F s A
Z 40000 [S ! [S X
ST I ol b
30000 7/ % 1 § .
[T d ‘
20000 | - 8 K H 4
10000 - &% L x....- E
0
0 20 40 60 80 100
Total Gain Achievable in Workload (%)
(c)

Figure 5.5: For 100x100 test matrices (a) shows the regudiire ofA’. The solid line at y=100 represents
the starting size and the lower solid line represents optiitd shows the relative effectiveness. (c) shows
the running time for each.

80

2.5e+06 T T

' Basic—MA\lN —
Add-MAP —--x---

2e+06 -

1.5e+06

Runtime (ms)

1le+06

500000

0 50 100 150 200 250
Number of Queries

Figure 5.6: The running time as the size of a square matricieased.

strategies, for various sized square matrices. Unforélyyatone of the algorithms scale well as the matrix
size is increased. However, theoA CoOMPOSITION scales considerably better than thesdBc CompPOSH
TION algorithm. Effectiveness, not shown, remains the sameigintsl increases as the size of the matrix
increases.

Note that the super-linear scaling is not unexpected. Thblem of finding a minimal boolean
basis has been shown to be equivalent to finding the minimadben of maximal cliques in a bipartite
graph [51]. Finding the maximal bi-clique is not only NP-ldabut also is known to be hard to approximate.
Our solution, while not fully exhaustive, considers a veaygke number of possibilities and produces near-
optimal answers in our experiments.

In summary, the AbD CompPosITION algorithm with the M/A/P search strategy is the clearly the
winner. Itis 70-90% effective in finding the smallest bagis and is often the fastest algorithm for duplicate
insensitive aggregates.

Basic Decomposition

As expected, our basic decomposition presented in SectBonttich works for all aggregate func-
tions, is ineffective in most situations. Due to space latigdns we do not show any results and only sum-
marize our findings. For duplicate sensitive tests, therélgn can often produce answers that are worse
than no-sharing, generating anthat has more entries than the number of queries, and inagesshowing
modest sharing of 5-20% optimal. The algorithm performs imesases where there is large sharing potential.
Perhaps the only redeeming characteristic of the algorishtmat it is fast, running faster than a half second
for 500 queries, and only a few seconds for 1500 queries. Holicate insensitive tests, the algorithm finds
sharing potential extremely rarely, but runtime remaimsshme. This is expected, since the algorithm makes
no attempt to exploit the duplicate insensitive property.

Given these results, it is clear that this general-purpeskrique should not be used when our

81

450 T T r T . . .
— — 3 0 —

o 400 £ -
s .
S 30 % i
T
o .
5 300 Txe 7
8
g 20 *. i
E h x
8 200 } i
8 *

°
= 150 Individual Queries —+— 4
Non-Optimized --->%---

Optimized with Add-MAP ------
100 L 1 1 1 1 |

10 20 30 40 50 60 70 80 90
Total Gain Achievable in Workload (%)

Figure 5.7:Total network communication savings in PIER.

special-purpose solutions can be used (i.e., for duplitetensitive and linear aggregates.) Non-linear,
duplicate-sensitive aggregates appear to be an extreriffetyld family to optimize in our context.

Result from PIER

Figure 5.7 depicts the total network communication savaufgseved by our duplicate insensitive
techniques executing over the PIER as a function of the traial achievable in the query workload. In
this specific experiment, PIER was configured to use the BarihéT overl, 024 nodes, and run standard
hierarchical MAX queries; furthermore, each node had aoarig-generated data distribution such that all
nodes share the santematrix and explicit synchronization was not needed.

The numbers shown are for a workload1®0 concurrent MAX aggregation queries. The “indi-
vidual queries” line shows the baseline communication logad when the multi-query optimization feature
is not utilized. The “non-optimized” line uses the multieqy optimization feature, butoes not perform any
actual sharing and instead uses the identity fragment matrix #6r— the line just serves to illustrate the
communication overhead of multi-query optimization (es&dly, the overhead of shipping the longer frag-
ment identifiers). Finally, the last line employs our Add-MAptimization strategy, demonstrating a very
substantial, linear decrease in communication cost ascthievable gain in the workload increases.

82

| FSize| Algorithm | A’size | % Effective| Runtime (ms)]
50x100| Basic-M/A/W | 60.9 (17.3) 53.6% 33304 (16694)
50x100| Add-O/A | 57.6(16.3)] 58.4% | 28416 (20980)
50x100 Add-O/R 48.6 (12.2) 73.1% 19622 (4780)
50x100| Add-O/S | 49.4(11.8)] 72.0% | 9050 (3484)
50x100| Add-M/A/D | 55.6(16.4) 61.5% 35145 (13880)
50x100| Add-M/A/P | 452 (11.8)] 78.3% 2730 (733)
50x100| Add-M/A/W | 52.6 (14.3)] 66.5% | 5190 (2035)
50x100| Add-M/R/D | 87.6(5.2) | 18.4% | 33400 (16544)
50x100| Add-M/S/D | 49.7 (12.7) 71.4% 12675 (4488)
50x100| Add-M/R/P | 87.9(5.1) | 18.1% | 33475 (16116)
50x100| Add-M/S/P 87.9(5.1) 18.1% 33145 (15982)
50x100| Add-M/RW | 87.6 (5.2) | 18.4% | 33424 (16580)
50x100| Add-M/SMW | 99.8(0.4) | 0.3% 22610 (1681)

100x100| Basic-M/AM | 77.8 (16.5)| 47.5% | 38740 (14815)
100x100| Add-O/A | 77.1(20.3)| 41.4% | 36493 (21889)
100x100] Add-O/R | 67.3(20.7)] 72.2% | 26433 (15700)
100x100| Add-O/S | 66.7 (20.3)| 74.1% | 9924 (6624)
100x100| Add-M/A/D | 77.3 (20.5)| 41.1% | 45602 (23751)
100x100| Add-M/A/P | 64.6 (21.2)] 79.6% | 4170 (1737)

100x100| Add-M/AM | 71.7 (20.4)| 58.0% | 6975 (2265)

100x100| Add-M/R/ID | 96.5(4.7) | 6.0% | 56812 (28320)
100x100| Add-M/S/D | 67.7(20.0| 72.3% | 14727 (12835)
100x100| Add-M/R/P | 96.3(5.1) | 6.2% | 56416 (27898)
100x100| Add-M/S/P | 96.3(5.1) | 6.2% | 56453 (27972)
100x100| Add-M/RIW | 96.5(4.7) | 6.0% | 56754 (28308)
100x100| Add-M/S/W | 99.6(0.8) | 1.5% 18984 (9136)

150x100| Basic-M/AM | 77.3 (15.5)| 48.6% | 44446 (18225)
150x100| Add-O/A | 78.0(19.8)] 40.8% | 46702 (28646)
150x100| Add-O/R | 67.6 (20.4)| 71.1% | 39248 (25552)
150x100| Add-O/S | 65.8 (20.5)] 76.1% | 11672 (8922)
150x100| Add-M/A/D | 77.9 (20.1)| 40.6% | 59397 (36990)
150x100| Add-M/AIP | 64.6 (21.1)| 79.9% | 5788 (2554)

150x100| Add-M/AMW | 71.9 (20.1)| 57.6% | 8694 (3107)

150x100| Add-M/R/D | 96.7 (4.4) | 6.0% | 67981 (31839)
150x100| Add-M/S/D | 67.7(20.2)] 73.2% | 18458 (16314)
150x100| Add-M/R/P | 965 (5.0) | 6.3% | 68117 (32045)
150x100| Add-M/S/P | 96.5(5.0) | 6.3% | 68173 (32200)
150x100| Add-M/RIW | 96.7 (4.4) | 6.0% | 67929 (31739)
150x100| Add-M/SW | 99.6 (1.0) | 1.5% | 22105 (12201)

Table 5.2: Data for all duplicate sensitive algorithms agexd over all total gains for each particular matrix
size. Standard deviation shown in parentheses.

83

Chapter 6

Related Work

PIER is the first and only major effort toward an Internetkscalational query system. However it
is inspired by and related to a large number of other projadisth the DB and Internet communities.

6.1 Internet Systems

The leading example of a massively distributed system isriteznet itself. The soft-state consis-
tency of the Internet’s internal data [14] is one of the chiefdels for our work. On the schema standardiza-
tion front, we note that significant effort is expended imstardizing protocols (e.g. IP, TCP, SMTP, HTTP)
to ensure that the “schema” of messages is globally agrped;but that these standards are often driven by
popularly deployed software. While rarely stored persigye the number of bytes generated from each of
these “schemas” annually is enormous.

There are two very widely-used Internet directory systamastave simple query facilities. DNS is
perhaps the most ubiquitous distributed query system omthenet. It supports exact-match lookup queries
via a hierarchical design in both its data model (Internetenoames) and in its implementation, relying on a
set of (currently 13) root servers at well-known IP addresE®AP is a hierarchical directory system largely
used for managing lookup (selection) queries. There hasdsmae work in the database research community
on mapping database research ideas into the LDAP domainieadersa (e.g., [42]). These systems have
proved effective for their narrow workloads, though ther gersistent concerns about DNS on a number of
fronts [58].

As is well known, P2P filesharing is a huge phenomenon, anmgslike KaZaA, Gnutella,
eDonkey, and BitTorrent each have hundreds of thousandseo$ at any given time. These systems typically
provide simple Boolean keyword query facilities (withoanhking) over short file names, and then coordinate
point-to-point downloads. In addition to having limitedegy facilities, they are ineffective in some basic
respects at answering the queries they allow; the intetestaler is referred to the many papers on the subject
(e.g., [49, 84])).

84

6.2 Database Systems

Query processing in traditional distributed databasesded on developing bandwidth-reduction
schemes, including semi-joins and Bloom joins, and incatfeal these techniques into traditional frame-
works for query optimization [61]. Mariposa was perhapshi@st ambitious attempt at geographic scal-
ing in query processing, attempting to scale to thousandstes$ [75]. Mariposa focused on overcoming
cross-administrative barriers by employing economic lieet mechanisms in the cost estimation of a query
optimizer. To our knowledge, Mariposa was never deployesimulated on more than a dozen machines,
and offered no new techniques for quesecutiononly for query optimization and storage replication. By
contrast, we have deferred work on query optimization,gréfg to first design and validate the scalability
of our query execution infrastructure.

Many of our techniques here are adaptations of query exatstiategies used in parallel database
systems [21]. Unlike distributed databases, parallelsas have had significant technical and commercial
impact. While parallelism per se is not an explicit motigatiof our work, algorithms for parallel query
processing form one natural starting point for systemsessiog queries on multiple machines.

PIER'’s architecture and algorithms are closer to parabghlase systems like the Gamma Sys-
tem [20], Volcano [26], etc. — particularly in the use of hgsrtitioning during query processing. Naturally
the parallel systems do not typically worry about distréaliissues like multi-hop Internet routing in the face
of node churn. Some algorithms, such as Bloom joins origmh&tom the IBM research project R* [53],
which was the distributed version of System R.

In terms of its data semantics, PIER most closely resemiglesalized data integration and web-
query systems like Tukwila [40] and Telegraph [70]. Thosstems also reached out to data from multiple
autonomous sites, without concern for the storage sensaatioss the sites.

Another point of reference in the database community is tha af distributed stream query pro-
cessing, an application that PIER supports. The Boreadisqwal [13] focuses on a small scale of distribution
within a single administrative domain, with stronger guriegs and support for quality-of-service in query
specification and execution. The Medusa project [5] augsing vision with Mariposa-like economic ne-
gotiation among a few large agents.

The HiFi project [22] discusses the challenges with highifasystems. In particular they examine
RFID applications which generate large amounts of dataea¢tige of the network. Through a hierarchy of
processing the quantity of data is reduced to an amountxeitar a single centralized system. The project
focuses on removing anomalies, interpolating missing,dataoving duplicates, and validating the stream
of readings.

Tian and DeWitt presented analytical models and simulatfon distributed eddies [76]. Their
work illustrated that the metrics used for eddy routing giek in centralized systems do not apply well in the
distributed setting. Their approaches are based on eaehpsstbdically broadcasting its local eddy statistics
to the entire network, which would not scale well in a systéwm PIER.

In terms of declarative query semantics for widely disti#alisystems, promising recent work

85

by Bawa et al. [7] addresses in-network semantics for botsirot and continuous aggregation queries,
focusing on faults and churn during execution. In the PIERtext, open issues remain in capturing clock
jitter and soft state semantics, as well as complex, mplrator queries.

Somewhat more tangential are proposals for query proagssimireless sensor networks [10, 54].
These systems share our focus on peer-to-peer archite@aceminimizing network costs, but typically
focus on different issues of power management, extremahblandwidths, and very lossy communication
channels.

6.3 Distributed Hash Tables

Most traditional massively scalable query systems (e.g.SPR2P filesharing) use a hierarchi-
cal scheme to enhance recall. Hierarchical architectwiss rconcerns about scalability, availability, and
resilience to attack, since they display centralized attarsstics towards the root of the hierarchy.

By contrast, DHTs [63, 74, 87, 68] provide a flat, truly peespeer topology for distributed
lookups. Different DHT schemes differ in their details, lalit provide common facilities: the ability to
partition a value domain across multiple machines, to effidy (in few network hops) route messages by
value to the node responsible for the value’s partition ravjgle some transient storage and retrieval of these

messages, and to efficiently reconstruct the topology itfieibe of frequent node arrivals and departures.

6.4 Hybrids of P2P and DB

Gribble, et al. were the first to make the case for a joint reteagenda in P2P technologies and
database systems [30]. Another early vision of P2P datales® presented by Bernstein et al. [8], who used
a medical IT example as motivation for work on what is somesroalled “multiparty semantic mediation”:
the semantic challenge of integrating many peer databatebeterogeneous schemas. This area was a main
focus of the Piazza project; a representative result is thaik on mediating schemas transitively as queries
propagate across multiple databases [34]. From the paigpetPIER and related Internet systems, there are
already clear challenges and benefits in unifying the alirfdanogeneoudata on the Internet [39]. These
research agendas are complementary with PIER’s. An eddyt @i this regard is the PeerDB project [59],
though it relies on a central directory server, and its apgihdo schema integration is quite simple.

PIER is not the only system to address distributed queryfridata on the Internet. The IrisNet
system [24] has similar goals to PIER, but its design is akstantrast: IrisNet uses a hierarchical data
model (XML) and a hierarchical network overlay (DNS) to rewueries and data. As a result, IrisNet
shares the characteristics of traditional hierarchictdlolases: it is best used in scenarios where the hierarchy
changes infrequently, and the queries match the hieradstyolabe [78] is another system that focuses on
a hierarchy: in this case the hierarchy of networks and stivarks on the Internet. Astrolabe supports a
data-cube-like roll-up facility along the hierarchy, armh®nly be used to maintain and query those roll-ups.

86

Another system that shared these goals was Sophia [80]trébdisd Prolog system for network
information. Sophia’s vision was essentially a superseRl&R’s, inasmuch as the relational calculus is a
subset of Prolog. Sophia never developed distributed agaiion or execution strategies, the idea being that
such functionality could be coded in Prolog as part of theguenother workshop proposal for peer-to-peer
network monitoring software is presented in [72], incluglansimple query architecture, and some ideas on
trust and verification of measurement reports.

P2 [48] is another distributed dataflow system. P2 uses al miyle-level declarative language,
NDLog [47], which is based on Datalog. The initial work of tR2 project is focused on implementing
overlay networks (including DHTS) and other network praiscusing P2. NDLog provides for recursive
queries (which are required for most network protocols) ammatic execution optimization. This enables
the implementation of complex overlay networks in 100x feviges of code. The initial development of
NDLog used PIER before the P2 team developed their own datafletem.

Range indexing is another topic that is being explored intiplel projects (e.g., [18, 9, 33], etc.)
We favor the PHT scheme in PIER because it is simpler than afdisese other proposals: it reuses the DHT
rather than requiring a separate distributed mechanism[&8];, it works over any DHT (unlike Mercury [9]),
and it appears to be a good starting point for resiliencycamency, and correctness — issues that have been
secondary in most of the related work.

6.5 Multiquery Optimization

Much of the prior work on multi-query optimization (such &9]) focuses on select/project/join
gueries. Our work addresses aggregation, which was notywadelressed in prior research.

For the case of aingle distributed aggregation query, efficient in-network exeuou strategies
have been proposed by several recent papers and reseatatypes (including, for instance, TAG [54],
SDIMS [83]). The key idea in these techniques is to performadhgregate computation over a dynamic
tree in an overlay network. Aggregation occurs over a dyoamnsie, with each node combining the data
found locally along with anyPartial State Records (PSRisyeceives from its children, and forwarding the
resulting PSR one hop up the tree. Over time, the tree dyradiynadjusts to changing node membership and
network conditions. More recent work on distributed dataasning has demonstrated that, with appropriate
PSR definitions and combination techniques, in-networkeggtion ideas can be extended to fairly complex
aggregates, such as approximate quantiles [17, 29], anddpyate histograms and join aggregates [16].
None of this earlier work considers the case of multipleritisted aggregation queries, essentially assuming
that such queries are processed individually, modulo pesrsame simple routing optimizations. For exam-
ple, PIER suggests using distinct routing trees for eachyguehe system, in order to balance the network
load [38].

In the presence of hundreds or thousands of continuous gafipe queries, system performance
and scalability depend upon effective sharing of executmsis across queries. Recent work has suggested

87

solutions for thecentralizedversion of the problem, where the goal is to minimize the am@f compu-
tation involved when tracking (1) several group-by aggtegddiffering in their grouping attributes) [86],
or (2) several epoched aggregates (differing in their egimds and/or selection predicates) [44, 46], over
a continuous data streaobserved at a single sitén the distributed setting, network communication is the
typical bottleneck, and hence minimizing the network teaffecomes an important optimization concern.

In an independent effort, [77] proposes a distributed smifor linear aggregates. Their scheme is
based on heuristics tailored to power-constrained seatowhere the query workload is restricted &tatic
collection of simple spatial predicates related to the oekvtopology. Instead, our dynamic fragment-based
method does not have any restrictions on the query predicate employs optimal linear-algebra techniques
to uncover sharing across linear aggregates. They alsawebee analogy to the Set-Basis problem for
MIN/MAX aggregates but do not propose any algorithmic solutiorti®duplicate-insensitive case.

88

Chapter 7

Conclusion

In this thesis we presented a query processor designed tessiely use DHTSs to implement
many traditional DBMS functions. Here we take a moment toneenate the various ways the DHT is used.

e Query Dissemination.The multi-hop topology in the DHT allows construction of qudissemination
trees as described in Section 3.3.3. If a table is publishiedthe DHT with a particular namespace
and partitioning key, then the query dissemination layerrcaite queries with equality predicates on
the partitioning key to just the right nodes.

e Hash Index: If a table is published into the DHT, the table is essentisityred in a distributed hash
index keyed on the partitioning key. Similarly, the DHT cdeoabe used to create secondary hash

indexes (as used in the symmetric semi-join in Section %.3.2

e Range Index Substrate:The PHT technique provides resilient distributed rangereefunctionality
by mapping the nodes of a trie search structure onto a DHT [65]

e Partitioned Parallelism: Similar to the Exchange operator [26], the DHT is used toifi@amttuples
by value, parallelizing work across the entire system wpita/iding a network queue and separation
of control-flow between contiguous groups of operators (aphs).

e Operator State: Because the DHT has a local storage layer and supports hakbhpls, it is used
directly as the main-memory state for operators like hastsjand hash-based grouping, which do not
need to maintain their own separate hash tables.

e Hierarchical Operators: The inverse of a dissemination trees is an aggregationwreieh exploits
multi-hop routing and callbacks in the DHT to enable hiehnézal implementations of dataflow opera-
tors (aggregations in Section 4.2 and joins in Section 4.3).

We showed that PIER can be used to efficiently execute agipagand join queries. Aggregation
queries can be executed using a wide-range of strategieslistlessed five dimensions to classify the vari-

89

ous strategies, including the structure of the aggregatommunication, whether in-network aggregation is
performed, the routing method, the dynamism of the routmgl, the timing of communication.

Our results showed that using the DHT’s routing alone tovddhie aggregation tree is not efficient.
By using the DHTSs routing and additional query processimggcave were able to construct a more efficient
tree that eliminates network bottlenecks. Furthermoregxposing the topology to the application we were
able to choose timing that reduces latency and extra nete@rknunication.

We showed that for executing joins the use of the DHT imposasesmodest overhead, the DHT
provided a feasible and scalable platform for executinggoiWe presented a number of algorithms (symmet-
ric hash join and Fetch Matches) and rewrite strategiesfsgtmic semi-join and Bloom joins). We showed
their performance tradeoffs of the different strategiedanifferent workloads.

Finally, in Chapter 5 we showed that in an environment whieeegt are many simultaneous aggre-
gation queries, we can further optimize the execution tai@antly reduce network communication. We
developed novel algorithms to optimize hundreds of sinmeltaus queries and explored the performance and
effectiveness of them.

Overall we presented a complete system that achieves thefgoaviding a rich query language
with location transparency and scalability with relaxethaatics. The design, architecture, and algorithms
presented in thesis can be used to build Internet-scalejmansive applications.

90

Appendix A

UFL Language

UFL is a low level syntax for writing queries for executionPhER. UFL is loosely based on *nix
object-oriented configuration files.
The grammar for UFL is listed below:

e <Query> ::= (<Object>)+

e <Object> ::= "%’ <ObjectType> '(' <ObjectName> ')’
' {* (<Object> | <Setting>) .y

e <ObjectType> ::= 'opgraph’ | 'operator’ | 'predicate’
e <ObjectName> ::= <TextString>
e <Setting> ::= <Key> ([(<Index>)? '1)? ’'= <Value>

o <Key> := <TextString>

e <Value> := <LiteralTextString> | <Expression>
e <Index> := <TextString>
e <Expression> ::= <ExpressionConstant> | <ExpressionFiel d> |

<ExpressionFunction>
e <ExpressionConstant> ::= <LiteralTextString> "::" <Cast Type>
e <CastType> ::= <TextString>
e <ExpressionField> ::= '$’ <LiteralTextString>

e <ExpressionFunction> ::= <FunctionName> '(’
(<Parameter> (', <Parameter>) *)?)

91

e <FunctionName> := <LiteralTextString>
e <Parameter> ::= <Expression>
e <TextString> := ([a’-'z, 'A-'Z’, '0-9, ", ’ * 20+
e <LiteralTextString> ::= <TextString> | ™
(<LiteralChar> | <LiteralEscape>) * M
e <LiteralChar> ::= Any char exceptor’
e <LiteralEscape> := " (<Unicode> ($)? | <QueryExpansion>
($)? ' \$ ™ (9)?)
e <Unicode> ::= 'u’ [0-9', 'A-F, 'a-f] [0-9, 'A-F, 'a-f]

[0-9, "A-F, "a-f] [0-9', 'A-F, "a-f]

e <QueryExpansion> = 'qt’ |

ql

There are three types of objects: opgraph, operator andcpted Any operator object must be
embedded within an opgraph object. Likewise any predichjecd must be embedded in an operator object.
Although the grammar does not specifically enforce the ngsthe UFL parser does. All objects are named
which can then be used as references to that object.

Settings are key-value pairs that belong to the object thepecified in. Settings can have flat,
array or hash table values. Each element of the array or hakhis listed as a separate setting with a different
index. To illustrate the types of settings:

e Flat: No index is specified
type = SCAN

e Array: Index represents position in array, starting with zero. &leenents may be listed in any order.
Elements with no index specified will be appended to the erdearray in the order listed.
RenamelList[0] = Columnl
RenamelList[40] = Column2
RenamelList[2] = Column3
RenamelList[]] = Column4

e Hash Table: Index represents the key for the entry in the hash table.
Options[FE] = 100
Options[FW] = 20
Options[FC] = 32

The type (hash table or array) of the setting is inferred thasethe first use. If the first listing of
the setting uses an integer typed index value it is assumiegl 4o array, otherwise it is a hash table. To force

92

a hash table structure even when using numeric keys, a dumtmyteving an index of '*’ and any value is
specified.

The parser recognizes a number of settings for each typejeétold\ partial list for each object is
listed below:

e opgraph:
— ns the namespace for the query dissemination, optional.
—rid the resource identifier for the query dissemination, ogtion
— duration along integer representing the duration of execution iosds.
e operator:
— type the type of operator: cache, dupelim, eddy, flowcontrolugtty, join, null, projection,
put, queue, result, scan, selection, tee or union.

— implementation the specific implementation of the operator. This permitdtipla imple-
mentations of the same operator.

— sources - an array representing the parent operators

— There are also operator type specific settings.

e predicate:

— type the type of predicate or set, valid values include: and, matomic

— leftexpression - an expression (as defined by the grammar), only valid ifpe ts atomic.
— rightexpression - an expression (as defined by the grammar), only valid ifythe is atomic
— op the predicate operator, valid values include: =, !=, ¢, ¢, jequals, notequals, greaterthan,

greaterthanequals, lessthan, and lessthanequals, dialyf¥he type is atomic.

93

Appendix B

One-Shot Aggregation Algorithms

e |P-1L-Optimal. The query specifies the root using an IP socket address amaithker of nodes;,
participating in the query. Every node directly send a bR containing the aggregate of all local
data to the root using a direct IP message. After the rooives@and aggregatesvalues the query
is complete and the result is forwarded to the requestere Mattn is generally not known in large
dynamic system.

e |P-1L-Timeout. The query specifies the root using a IP socket address andeauiraondition. As
with IP-1L-Optimal every node sends a single PSR to the root using a direct IPages©nce the
timeout condition is satisfied at the root the result is pamali If additional data arrives after the
timeout, the timeout condition is reset and a revised réspitoduced when the next timeout occurs.

e DHT-1L-Optimal. The query specifies the root using a DHT ID and the number oésed partici-
pating in the query. Every node sends a single PSR to thesrDdiT ID using the DHTput function.
The root uses thé&can andnewData functions to receive the PSRs. After the root receiveglues
the result is produced.

e DHT-1L-Timeout. The query specifies a root using a DHT ID and a timeout conditks withDHT-
1L-Optimal every nodes send a single PSR to the root's DHT ID using the B&tTfunction. Once
the timeout condition is satisfied at the root, the resultiglpced. If data arrives after the timeout, the
timeout condition is reset and a revised result is produdegihvthe next timeout occurs.

e DHT-ML-Optimal. The query specifies a root using a DHT ID and the number of nedearticipat-
ing in the query. Every node sends a single PSR towards theisawy the DHTsend function. Each
node also listens for PSRs using the Didilcall. When a node other than the root receives a PSR, the
node simply forwards the PSR to the next hop usiagd without any additional processing. After the
root receives: values the result is produced. This algorithm will causeriot nodes to send multiple
PSRs.

94

e DHT-ML-Timeout. The query specifies a root using a DHT ID and a timeout conditids with
DHT-ML-Optimal every node sends a single PSR towards the root’s DHT ID usi@dHT send
function and forward any PSRs they receive. Once the timeondition is satisfied at the root, the
result is produced. If additional data arrives at the rotgrahe timeout, the timeout condition is reset
and a revised result is produced when the next timeout oc€his algorithm will cause interior nodes

to send multiple PSRs.

e DHT-Hi-Optimal. The query specifies a root using a DHT ID. In addition, the gueust specify the
number of nodes that each interior node should receive data(ihot just the root). This requirement
is just looser than specifying the topology in the query simterior nodes just need to be informed
how many nodes they should receive PSRs from, not the IDeflfP®se nodes. Every leaf node sends
a single PSR towards the root’s DHT ID using the Dknd function. Each node listens for PSRs
using the DHTupcall method. When a node receives the specified number of PSRenhiices the
PSRs using the aggregation function and forwards a singketB&he next hop using thend. When
the root receives the specified number of PSRs the resulbduped. This algorithm is not supported
by PIER since the topology generated by the DHT is not knavgmiori so the expected number of

messages can not be pre-determined.

e DHT-Hi-Timeout. The query specifies a root using a DHT ID and a timeout condiths with DHT-
Hi-Optimal every node sends a single PSR towards the root’s DHT ID ube@HT send function,
and listens for PSRs using the DHipcall method. Once the timeout condition is reached at a node,
the node combines the PSRs using the aggregation functibiioawards a single PSR to the next
hop using thesend. When the timeout condition is reached at the root the résytoduced. This
algorithm will cause interior nodes will send at least twd8Swvith nodes higher in the tree sending
more (humber of messages is equal to the node’s height ingbehere leaf nodes have height one). If
at a node (including the root) data arrives after the timgbettimeout condition is reset and a revised

PSR (or result) is produced.

95

Appendix C

Continuous Aggregation Algorithms

e |P-1L-Optimal, IP-1L-Timeout, DHT-1L-Optimal , andDHT-1L-Timeout. Same algorithms as for
one-shot queries except the same process is repeated fpiepaeh with each message containing an
epoch field.

e IP-1L-Learned. The query specifies a root using an IP socket address anddaaténup timeout
value. For each epoch every node directly sends a single BSRicing the aggregate of all local data
to the root. The root maintains a list of children and afteeireing PSRs from all children (all other
nodes) produces the answer for that epoch. Children arevemfoom the list after not sending any
PSRs within the specified child cleanup timeout.

e DHT-1L-Learned. The query specifies a root using a DHT ID and a child cleanupdimvalue. For
each epoch every node directly sends to the root DHT ID u$iadHT put function. The root uses
[Scan andnewData to receive PSRs. The root maintains a list of children aner aficeiving PSRs
from all children (all other nodes) produces the answertiat €poch. Children are removed from the
list after not sending any PSRs within the specified childicig timeout.

e DHT-ML-Optimal andDHT-ML-Timeout. Same algorithms as for one-shot queries except the same
process is repeated for every epoch with each messagertogtan epoch field.

e DHT-ML-Learned. The query specifies a root using a DHT ID and a node cleanuptimalue. For
each epoch every node sends a single PSR towards the roofd[Hsing the DHTsend function.
Each node also listens for PSRs using the Dhbtall. When a node other than the root receives a PSR
it immediately forwards the PSR to the next hop uséagd. The root maintains a list of nodes and
after receiving PSRs from all nodes produces the answehé&treippoch. Nodes are removed from the
list after not sending any PSRs within the specified nodencipdimeout. This algorithm will cause
interior nodes to send multiple PSRs.

e DHT-ML-S-Optimal. The query specifies a root using a DHT ID and the number of nedgsartic-

96

ipating in the query. On the first epoch every node sends #esiRfBR towards the root using the DHT
send function remembering the ID of the next hop node. On subssmmEochs the node will send its
PSR to the same node using the stored ID from the first epotfhatihode is no longer reachable, the
DHT will automatically route the message to the node withdlosest ID. Each node also listens for
PSRs using the DHTipcall. When a node other than the root receives a PSR, is immegiatelards
the PSR to the next hop usingnd. After the root receives values the answer is produced. This
algorithm will cause interior nodes to send multiple PSRsc&the DHT API does not report the

actual next hop IB, this algorithm is not implemented in PIER.

e DHT-ML-S-Timeout. The query specifies a root using a DHT ID and a timeout conditidss with
DHT-ML-S-Optimal , in the first epoch the PSR is routed to the root ID using the REA function
remembering the ID of the next hop node, subsequent eponldgs¢hat same ID unless the node is
not reachable, and each node forwards any PSRs it receivhen ke timeout condition is reached
at the root the result is produced. If data arrives at the after the timeout, the timeout condition
is reset and a revised answer is produced when the next tiroeours. This algorithm requires that
interior nodes send multiple PSRs. Again, since the DHT Ad&lsthot report the actual next hop this

algorithm is not implemented in PIER.

e DHT-ML-S-Learned. The query specifies a root using a DHT ID and a node cleanumtitalue.
As with DHT-ML-S-Optimal , in the first epoch the PSR is routed to the root’s DHT ID ushegDHT
send function remembering the ID of the next hop node, subsegeeaths send to that same ID, and
all non-root nodes immediately forward any PSRs they recelhe root maintains a list of nodes and
after receiving PSRs from all nodes, the root produces theltréor that epoch. Nodes are removed
from the list after not sending any PSRs within the specifiediecleanup timeout. This algorithm will
cause interior nodes to send multiple PSRs. Again, sincBHIE API does not report the actual next

hop this algorithm is not implemented in PIER.

e Tree-ML-Optimal. The query specifies a root using a DHT ID, the number of nodesodes,n,
participating in the query, and the desired maximum numbehitdren (or fan-in of a node). Similar
to DHT-ML-Optimal , in the first epoch every node sends a single PSR towardsdhasing the DHT
send function. Each node also listens for PSRs using the Diddull. When a node other than the root
receives a PSR, it simply forwards the PSR to the next housind. After the root receives values
the answer is produced. If at any time during or at the endeéfioch a node detects that the node has
more than the maximum number of children, it will send a mgega the excess children requesting
that they use contact a different parent in the next epochk. IDhof a non-excess child is included in
the message. If a node receives this redirect message sqariént, it will send subsequent PSRs to
the new ID instead of to the root’s ID. On failure of the newgqrdr the node will resume sending to the

1The DHT is unable to return the next hop ID synchronouslyesithe next hop is not known until the message is sent, recéiyed
the remote node, and ACKed. The DHT could optimisticallyunetthe first hop choice synchronously, but this may be wrénigait
node is now unreachable and an alternate route is used.

97

root’s ID. This algorithm requires that interior nodes sendltiple PSRs, and that parents may send

messages to their children.

Tree-ML-Timeout. The query specifies a root using a DHT ID, a timeout conditéord the desired
maximum number of children. As witliree-ML-Optimal in the first epoch the PSR is routed to the
root ID using the DHTsend function., nodes listen for PSRs using the DHjcall, and non-root
nodes simply forward the PSRs to the next hop usingl. If at any time a node detects that it has
more than the maximum number of children, it sends a messatgedxcess children requesting they
use the ID of a non-excess child as their parent in subsegpechs until the new parent fails. When
the timeout condition is reached at the root the result islpced. If data arrives after the timeout,
the timeout condition is reset and a revised answer is pediwhen the next timeout occurs. This
algorithm requires that interior nodes send multiple PSiRkthat parents may send messages to their

children.

Tree-ML-Learned. The query specifies a root using a DHT ID, a node cleanup titnedue, and the
desired maximum number of children. As witree-ML-Optimal in the first epoch the PSR is routed
to the root ID using the DHEend function, nodes listen for PSRs using the Dkddeall, and non-root
nodes simply forward the PSRs to the next hop usingl. If at any time a node detects that it has
more than the maximum number of children, it sends a messatgedxcess children requesting they
use the ID of a non-excess child as their parent in subsegpaths until the new parent fails. The
root maintains a list of nodes and after receiving PSRs fribmoales, the root produces the result for
that epoch. Nodes are removed from the list after not seratigd®SRs for the specified node cleanup
timeout. This algorithm requires that interior nodes sendtigie PSRs and that parents may send
messages to their children.

Tree-ML-S-Optimal. The query specifies a root using a DHT ID, the number of nadgsarticipating

in the query, and the desired maximum number of childrendprifi of a node). On the first epoch
every node sends a single PSR towards the root using the £2hd function remembering the ID
of the next hop node. On subsequent epochs the node will £ RER to the same node using the
stored ID from the first epoch. If that node is no longer reatdahe DHT will automatically route
the message to the node with the closest ID. Each node alendifor PSRs using the DHiIpcall.
When a node other than the root receives a PSR, is immedfataigrds the PSR to the next hop using
send. If at any time a node detects that it has more than the maximumber of children, it sends
a message to its excess children requesting they use the ébhoh-excess child as their parent in
subsequent epochs until the new parent fails. After thenexgives: values the answer is produced.
This algorithm will cause interior nodes to send multipldR3S

Tree-ML-S-Timeout. The query specifies a root using a DHT ID, a timeout conditéod the desired
maximum number of children (or fan-in of a node). As wittee-ML-S-Optimal, in the first epoch
the PSR is routed to the root ID using the DHdnd function remembering the ID of the next hop

98

node, subsequent epochs send to that same ID unless thesmmdeeéachable, and each node forwards
any PSRs it receives. If at any time a node detects that it e than the maximum number of
children, it sends a message to its excess children reqgebty use the ID of a non-excess child as
their parent in subsequent epochs until the new parent fallgen the timeout condition is reached at
the root the resultis produced. If data arrives at the rdet difie timeout, the timeout condition is reset
and a revised answer is produced when the next timeout acthrs algorithm requires that interior
nodes send multiple PSRs.

Tree-ML-S-Learned. The query specifies a root using a DHT ID, a node cleanup titnesdue, and
the desired maximum number of children (or fan-in of a node)with Tree-ML-S-Optimal , in the
first epoch the PSR is routed to the root’'s DHT ID using the Déd#d function remembering the
ID of the next hop node, subsequent epochs send to that sana@diall non-root nodes immediately
forward any PSRs they receive. If at any time a node deteatstthas more than the maximum number
of children, it sends a message to its excess children réggekey use the ID of a non-excess child
as their parent in subsequent epochs until the new pardsit Tdie root maintains a list of nodes and
after receiving PSRs from all nodes, the root produces thltréor that epoch. Nodes are removed
from the list after not sending any PSRs within the specifiediecleanup timeout. This algorithm will

cause interior nodes to send multiple PSRs.

DHT-Hi-Optimal andDHT-Hi-Timeout. Same algorithms as for one-shot queries except the same

process is repeated for every epoch with each messagertogtan epoch field.

DHT-Hi-Learned. The query specifies a root using a DHT ID and a child cleanupdumvalue. As
with DHT-Hi-Optimal every node sends a single PSR towards the root's DHT ID uem®HT send
function, and listens for PSRs using the DHhpcall method. Each node maintains a list of children
and after receiving PSRs from all children the node comhiime$ SRs using the aggregation function
and forwards a single PSR to the next hop usingi. If a PSR is not received within the child cleanup
timeout value the child is removed from the list and the PS&ei#t to the next hop. If a PSR from a
child not on the list is received, or a second PSR is receik@d finy existing child after the PSR for

that epoch has already been sent, an additional PSR is sent.

99

Bibliography

[1] Thbit, the tcp behavior inference todhttp://www.icir.org/tbit/

[2] Daniel J. Abadi, Don Carney, Ugur etintemel, Mitch Chaok, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aaréx New Model and Architecture for
Data Stream Managemerithe VLDB Journal12(2):120-139, 2003.

[3] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cghtinuous query language: semantic
foundations and query executiofhe VLDB Journgl15(2):121-142, 2006.

[4] Ron Avnur and Joseph M. Hellerstein. Eddies: Continlypéglaptive Query Processing. IRroc.
of the ACM SIGMOD International Conference on Managemeitaif, pages 261-272, Dallas, May
2000.

[5] Magdalena Balazinska, Hari Balakrishnan, and Michaeng&braker. Load Management and High
Availability in the Medusa Distributed Stream Processingt&m. InProc. of the ACM SIGMOD
International Conference on Management of Da&aris, June 2004.

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donatackl Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. V. der VorstTemplates for the Solution of Linear Systems: Building Edor
Iterative Methods. Philadalphia: Society for Industrial and Applied Matheiosit Also available as
postscript file on http://www.netlib.orgtemplatesTenesahtml, 1994.

[7] Mayank Bawa, Aristides Gionis, Hector Garcia-MolinagdaRajeev Motwani. The Price of Validity in
Dynamic Networks. IrProc. of the ACM SIGMOD International Conference on Managenof Data
Paris, June 2004.

[8] Philip A. Bernstein, Fausto Giunchiglia, Anastasiosnkantsietsidis, John Mylopoulos, Luciano Ser-
afini, and llya Zaihrayeu. Data Management for Peer-to-Beenputing : A Vision. InProc. of the 5th
International Workshop on the Web and Databases (WebDBje 2002.

[9] Ashwin R. Bharambe, Sanjay Rao, and Srinivasan Seshagrcy: A Scalable Publish-Subscribe
System for Internet Games. Rroc. of the 1st Workshop on Network and System Support foreGa
pages 3-9. ACM Press, 2002.

100

[10] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadards Sensor Database SystemsPioc.
of the IEEE International Conference on Mobile Data Managat(MDM), volume 1987 ol ecture
Notes in Computer Scienddong Kong, January 2001. Springer.

[11] Miguel Castro, Peter Druschel, Anne-Marie Kermari@ad Antony Rowstron. Scribe: A large-scale
and decentralized application-level multicast infrastinwe. InProc. of the IEEE Journal on Selected
Areas in Communications (JSAC) (Special issue on Netwaop@tfor Multicast Communications)
October 2002.

[12] Sirish Chandrasekaran, Owen Cooper, Amol Deshpandehaél J. Franklin, Joseph M. Hellerstein,
Wei Hong, Sailesh Krishnamurthy, Sam Madden, Vijayshaf@mnan, Fred Reiss, and Mehul Shah.
Telegraphcq: Continuous dataflow processing for an urnicestarld, 2003.

[13] Mitch Cherniack, Hari Balakrishnan, Magdalena Bateakia, Don Carney, Ugur Cetintemel, Ying Xing,
and Stan Zdonik. Scalable Distributed Stream Processmgrdc. of the First Biennial Conference on
Innovative Data Systems Resear8kilomar, CA, January 2003.

[14] David D. Clark. The Design Philosophy of the DARPA Intet Protocols. IrProc. of the ACM SIG-
COMM ConferenceAugust 1988.

[15] Saar Cohen and Yossi Matias. Spectral bloom filters.Pioc. of the ACM SIGMOD International
Conference on Management of Dapages 241-252, New York, NY, USA, 2003. ACM Press.

[16] Graham Cormode and Minos Garofalakis. “Sketching&tre Through the Net: Distributed Approx-
imate Query Tracking”. IrProc. of the International Conference on Very Large Datad&xag/LDB)
Trondheim, Norway, September 2005.

[17] Graham Cormode, Minos Garofalakis, S. Muthukrishraant] Rajeev Rastogi. “Holistic Aggregates in
a Networked World: Distributed Tracking of Approximate @tites”. In Proc. of the ACM SIGMOD
International Conference on Management of Q&altimore, Maryland, June 2005.

[18] Adina Crainiceanu, Prakash Linga, Johannes GehrkeJayavel Shanmugasundaram. Querying Peer-
to-Peer Networks Using P-Trees.Pmoc. of the 7th International Workshop on the Web and Dasaba
(WebDB) Paris, France, June 2004.

[19] Frank Dabek, M. Frans Kaashoek, David Karger, Robentridpand lon Stoica. Wide-area cooperative
storage with CFS. IiProc. of the 18th ACM Symposium on Operating Systems Plasc{{$OSR)
Chateau Lake Louise, Banff, Canada, October 2001.

[20] David J. Dewitt, Shahram Ghandeharizadeh, Donovanchngider, Allan Bricker, Hui-I Hsiao, and
Rick Rasmussen. The Gamma Database Machine Profe€E Transactions on Knowledge and Data
Engineering2(1):44-62, 1990.

101

[21] David J. DeWitt and Jim Gray. Parallel Database Systerhe Future of High Performance Database
SystemsCACM, 35(6):85-98, 1992.

[22] Michael J. Franklin, Shawn R. Jeffery, Sailesh Kristmathy, Fredrick Reiss, Sharig Rizvi, Eugene
Wu, Owen Cooper, Anil Edakkunni, and Wei Hong. Considersitor high fan-in systems: The hifi
approach. IrCIDR, Jan 2005.

[23] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastdgfiocessing set expressions over continuous
update streams. IRroc. of the ACM SIGMOD International Conference on Managenof Data
pages 265-276, New York, NY, USA, 2003. ACM Press.

[24] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, anthSasan Seshan. IrisNet: An Architecture
for a World-Wide Sensor WedEEE Pervasive Computing@(4), October-December 2003.

[25] Seth Gilbert and Nancy Lynch. Brewer's Conjecture ahd Eeasibility of Consistent, Available,
Partition-tolerant Web ServiceACM SIGACT News33(2), June 2002.

[26] Goetz Graefe. Encapsulation of Parallelism in the otz Query Processing System. Rroc. of the
ACM SIGMOD International Conference on Management of Dp#aes 102—-111, Atlantic City, May
1990. ACM Press.

[27] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew han, Don Reichart, Murali Venkatrao, Frank
Pellow, and Hamid Pirahesh. Data cube: A relational agdi@yaperator generalizing group-by, cross-
tab, and sub-totalData Mining and Knowledge. Discovery(1):29-53, 1997.

[28] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Stasihe dangers of replication and a solution.
In SIGMOD '96: Proceedings of the 1996 ACM SIGMOD internatictenference on Management of
data, pages 173-182, New York, NY, USA, 1996. ACM.

[29] Michael B. Greenwald and Sanjeev Khanna. “Power-Cosisg Computation of Order-Statistics over
Sensor Networks”. IfProc. of the ACM Symposium on Principles of Database Syqe®BS) Paris,
France, June 2004.

[30] Steven D. Gribble, Alon Y. Halevy, Zachary G. Ives, M&@adrig, and Dan Suciu. What Can Databases
Do for Peer-to-Peer? IRroc. of the 4th International Workshop on the Web and Dasakg\WebDB)
Santa Barbara, May 2001.

[31] Krishna Gummadi, Ramakrishna Gummadi, Steve Grib®jdvia Ratnasamy, Scott Shenker, and lon
Stoica. The impact of dht routing geometry on resilience mximity. In SIGCOMM '03: Proceed-
ings of the 2003 conference on Applications, technologiesitectures, and protocols for computer
communicationgages 381-394, New York, NY, USA, 2003. ACM.

102

[32] Krishna P. Gummadi, Stefan Saroiu, and Steven D. GeibKing: Estimating latency between arbitrary
internet end hosts. IRroceedings of the SIGCOMM Internet Measurement Workshid/(2002)
Marseille, France, November 2002.

[33] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadipgroximate Range Selection Queries in
Peer-to-peer. IProc. of the First Biennial Conference on Innovative Datat8yns Researclanuary
2003.

[34] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatav. Schema Mediation in Peer Data
Management Systems. Proc. of the 19th International Conference on Data Engimeg(ICDE),
Bangalore, India, 2003.

[35] Joseph M. Hellerstein. Toward Network Data IndeperndeS8IGMOD Record32, September 2003.

[36] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wankine aggregation. IRroc. of the 1997 ACM
SIGMOD international conference on Management of dpsages 171-182. ACM Press, 1997.

[37] Jeff Hodges and RL Bob Morgan. Lightweight Directorydkss Protocol (v3): Technical Specification,
September 2002.

[38] Ryan Huebsch, Brent N. Chun, Joseph M. Hellerstein,rBdbau Loo, Petros Maniatis, Timothy
Roscoe, Scott Shenker, lon Stoica, and Aydan R. Yumerefeérue architecture of pier: an internet-
scale query processor. GIDR, Jan 2005.

[39] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Bobau Loo, Scott Shenker, and lon Stoica.
Querying the Internet with PIER . IRroc. of the 29th International Conference on Very Largedat
Bases September 2003.

[40] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alexy, and Daniel S. Weld. An Adaptive Query
Execution System for Data Integration. Pmoc. of the ACM SIGMOD Conference on Management of
Data, Philadelphia, PA, June 1999.

[41] M. Frans Kaashoek and David Karger. Koorde: A simplerdegpptimal distributed hash table.Rmnoc.
of the 2nd International Workshop on Peer-to-Peer SystéATdRS) Berkeley, CA, February 2003.

[42] OlgaKapitskaia, Raymond T. Ng, and Divesh Srivast&xanlution and Revolutions in LDAP Directory
Caches. IrProc. of the International Conference on Extending Data&b@schnology (EDBT)pages
202-216, Konstanz, Germany, March 2000.

[43] Eddie Kohler, Robert Morris, Benjie Chen, John Jarinatid M. Frans Kaashoek. The Click Modular
Router.ACM Transactions on Computer Systeft§(3):263-297, August 2000.

[44] Sailesh Krishnamurthy, Chung Wu, and Michael Frankim-the-fly sharing for streamed aggregation.
In Proc. of the ACM SIGMOD International Conference on Managetf Data Chicago, IL, June
2006.

103

[45] John Kubiatowicz, David Bindel, Yan Chen, Steven Czaski, Patrick Eaton, Dennis Geels, Ra-
makrishna Gummadi, Sean Rhea, Hakim Weatherspoon, W&gdayier, Chris Wells, and Ben Zhao.
OceansStore: An Architecture for Global-Scale Persisteatag§e. InProc. of the 9th International
Conference on Architectural Support for Programming Laagges and Operating Systems (ASPLOS)
November 2000.

[46] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimand Peter A. Tucker. No pane, no gain: efficient
evaluation of sliding-window aggregates over data stre&8SMOD Rec.34(1):39-44, 2005.

[47] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David@ay, Joseph M. Hellerstein, Petros Ma-
niatis, Raghu Ramakrishnan, Timothy Roscoe, and lon Stolaclarative networking: Language,
execution and optimization. IRroc. of the ACM SIGMOD International Conference on Managem
of Data, Chicago, June 2006.

[48] Boon Thau Loo, Tyson Condie, Joseph M. Hellersteingd®eManiatis, Timothy Roscoe, and lon Sto-
ica. Implementing declarative overlays. October 2005.

[49] Boon Thau Loo, Joseph M. Hellerstein, Ryan HuebschitRilwenker, and lon Stoica. Enhancing P2P
File-Sharing with an Internet-Scale Query ProcessoPrbt. of the 30th International Conference on
Very Large Data BaseS$eptember 2004.

[50] Boon Thau Loo, Joseph M. Hellerstein, and lon Stoicast@umizable Routing with Declarative Queries.
In Proc. of the ACM Workshop on Hot Topics in Networks (HotN&ah Diego, CA, November 2004.

[51] Anna Lubiw. The boolean basis problem and how to coverespolygons by rectangleSIAM Journal
on Discrete Mathemati¢c$(1):98-115, 1990.

[52] Carsten Lund and Nihalis Yannakakis. “On the Hardndsspproximating Minimization Problems”.
Journal of the ACM41(5), September 1994.

[53] Lothar F. Mackert and Guy M. Lohman. R* Optimizer Valtsm and Performance Evaluation for
Distributed Queries. IiProc. of the 12th International Conference on Very LargedBases (VLDB)
pages 149-159, Kyoto, August 1986.

[54] Samuel Madden, Michael J. Franklin, Joseph M. Hel@nstand Wei Hong. TAG: A Tiny AGgregation
Service for Ad-Hoc Sensor Networks. roc. of the 5th Symposium on Operating Systems Design and
Implementation (OSDJBoston, December 2002.

[55] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, ajagshankar Raman. Continuously Adaptive
Continuous Queries. IRroc. of the ACM SIGMOD International Conference on Managetof Data
Madison, June 2002.

[56] Paul Mockapetris. Domain hames — implementation ardifipation, November 1987.

104

[57] Napster.http://en.wikipedia.org/wiki/Napster

[58] Internet Navigation and the Domain Name Systems: Teahilternatives and Policy Implications,
2004. http://www.nationalacademies.org/dns

[59] Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying dhdeerDB: A P2P-based System for
Distributed Data Sharing. IRroc. of the 19th International Conference on Data Enginag(ICDE),
Bangalore, India, March 2003.

[60] The Network Simulator - ns2, 2004ttp://www.isi.edu/nsnam/ns/index.html

[61] M. Tamer Ozsu and Patrick ValdurieRrinciples of Distributed Database Systems (2nd Editiégn-
tice Hall, 1999.

[62] Larry Peterson, Tom Anderson, David Culler, and TinyoRoscoe. A Blueprint for Introducing Dis-
ruptive Technology into the Internet. Froc. of the 1st ACM Workshop on Hot Topics in Networks
(HotNets) Princeton, October 2002.

[63] Sylvia Ratnasamy, Paul Francis, Mark Handley, Rich€aidp, and Scott Shenker. A Scalable Content
Addressable Network. IRroc. of the ACM SIGCOM Conferendgerkeley, CA, August 2001.

[64] Sylvia Ratnasamy, Mark Handley, Richard Karp, and S8bienker. Application-level Multicast us-
ing Content-Addressable Networks. Rroc. of the 2nd International Workshop of Network Group
Communication (NGGCR001.

[65] Sylvia Ratnasamy, Joseph M. Hellerstein, and Scothikéie Range Queries over DHTs. Technical
Report IRB-TR-03-009, Intel Research Berkeley, June 2003.

[66] Sean Rhea, Dennis Geels, Timothy Roscoe, and John twbéz. Handling Churn in a DHT. IRroc.
of the USENIX Annual Technical Conference (USENBSston, Massachusetts, June 2004.

[67] Martin Roesch. Snort — Lightweight Intrusion Detectifor Networks. InProc of the 13th USENIX
Systems Administration Conference (LIS?9attle, WA, November 1999.

[68] Antony Rowstron and Peter Druschel. Pastry: Scaldbégentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systeinscture Notes in Computer Sciené@18, 2001.

[69] Timos K. Sellis. Multiple-query optimization. IRroc. of the ACM Transactions of Database Systems
volume 13, pages 23-52, 1988.

[70] Mehul A. Shah, Samuel R. Madden, Michael J. Franklird doseph M. Hellerstein. Java Support for
Data-Intensive Systems: Experiences Building the TefgdyBataflow SystemACM SIGMOD Record
30, December 2001.

[71] Ambuj Shatdal and Jeffrey F. Naughton. Adaptive Patallggregation Algorithms. IProc. of the
ACM SIGMOD international conference on Management of daéges 104—114. ACM Press, 1995.

105

[72] Sridhar Srinivasan and Ellen Zegura. Network Measwam®inas a Cooperative Enterprise. Rroc. of
the 1st International Workshop on Peer-to-Peer SystemiBRE) Cambridge, MA, March 2002.

[73] L. J. Stockmeyer. The minimal set basis problem in NRwplete. Technical Report RC 5431, IBM
Research, May 1975.

[74] lon Stoica, Robert Morris, David Karger, M. Frans Kaask, and Hari Balakrishnan. Chord: Scalable
Peer-To-Peer Lookup Service for Internet ApplicationsPtac. of the ACM SIGCOMM Conference
pages 149-160, 2001.

[75] Michael Stonebraker, Paul M. Aoki, Witold Litwin, AvifBffer, Adam Sah, Jeff Sidell, Carl Staelin,
and Andrew Yu. Mariposa: A Wide-Area Distributed Databagst&m. VLDB Journal 5(1):48-63,
1996.

[76] Feng Tian and David J. DeWitt. Tuple Routing Strateda<Distributed Eddies. IfProc. of the 29th
International Conference on Very Large Data Bgsesptember 2003.

[77] Niki Trigoni, Yong Yao, Alan J. Demers, Johannes Gehied Rajmohan Rajaraman. Multi-query
optimization for sensor networks. Distributed Computing in Sensor Systems (DCQ$&jes 307—
321, Marina del Rey, CA, 2005. Springer.

[78] Robbert van Renesse, Kenneth P. Birman, Dan Dumitnd, \Aerner Vogel. Scalable Management
and Data Mining Using Astrolabe. Broc. of the 1st International Workshop on Peer-to-Peeteys
(IPTPS) Cambridge, MA, March 2002.

[79] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Ideand Eric Brewer. Capriccio: Scalable
Threads for Internet Services. Rroc. of the 19th ACM Symposium on Operating Systems Plascip
(SOSP)pages 268-281. ACM Press, 2003.

[80] Mike Wawrzoniak, Larry Peterson, and Timothy Roscoepl8a: An Information Plane for Networked
Systems. IrProc. of the 2nd ACM Workshop on Hot Topics in Networks (HNBIA, USA, Novem-
ber 2003.

[81] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Aiitdcture for Well-Conditioned, Scalable
Internet Services. IRroc. of the 18th ACM symposium on Operating systems plex{SOSP)pages
230-243. ACM Press, 2001.

[82] Annita N. Wilschut and Peter M. G. Apers. Dataflow QuemeEution in a Parallel Main-Memory
Environment. InProc. of the 1st International Conference on Parallel andtbbuted Information
Systems (PDISpages 68—77, 1991.

[83] Praveen Yalagandula and Mike Dahlin. SDIMS: A Scaldbitributed Information Management Sys-
tem. InProc. of the ACM SIGCOMM Conferendeortland, Oregon, 2004.

106

[84] Beverly Yang and Hector Garcia-Molina. Improving Sgam Peer-to-Peer Systems. Pmnoc. of the
22nd International Conference on Distributed Computingt&ws (ICDCS)Vienna, Austria, July 2002.

[85] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Glotvasion Detection in the DOMINO Over-
lay System. InProc. of the Network and Distributed System Security Sympo&@NDSS) February
2004.

[86] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srisas. Multiple aggregations over data
streams. IrSIGMOD '05: Proceedings of the 2005 ACM SIGMOD internaticcanference on Man-
agement of datgpages 299-310, New York, NY, USA, 2005. ACM Press.

[87] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapesky Infrastructure for Fault-tolerant Wide-
area Location and Routing. Technical Report UCB/CSD-0411UC Berkeley, April 2001.

