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Abstract— The concept of an information plane has
emerged recently as an important part of large, decentral-
ized systems that aspire to be self-managing, ranging from
PlanetLab to the Internet itself. In this paper we describe
what an information plane is, and report our experiences in
developing and deploying an information plane for the Plan-
etLab platform using the PIER distributed relational query
processor. We recount the lessons we have learned from the
experience, and the additional directions we intend to ex-
plore in the PHI project, which aims at providing an infor-
mation plane that can grow to serve a significant portion of
the Internet.

1. INTRODUCTION

Recent research into widely-distributed systems has led
to the emerging concept of an Information Plane: a ser-
vice or service component that efficiently delivers timely
and relevant data about the state of the system to all the
dispersed components of the system. For example, an
information plane for PlanetLab might be used by end-
systems for resource discovery or node monitoring and
load balancing. At a different scale, a hypothetical infor-
mation plane for the Internet would enable end-systems
and applications such as overlays to cooperate on routing
decisions, worm signature detection, and fault and perfor-
mance diagnosis of the network as a whole.

An information plane is broadly coextensive with the
system it relays information about, and consequently is
highly decentralized. In this respect it differs from tra-
ditional centralized management solutions: an informa-
tion plane may have to deliver specific information to all
points in the system concurrently. An information plane
might still be under single administrative control, but the
more interesting cases are where it is realized as a feder-
ation of cooperating but mutually suspicious entities, and
the extreme case of a fully peer-to-peer model.

In this paper we discuss the specific challenges in
building a robust and efficient information plane. Since
an information plane necessarily consists of some kind of
application-level overlay network, the familiar general is-
sues of reliability, fault-tolerance, performance, scalabil-
ity, and security exist as in any other large distributed sys-
tem. Here, however, we concentrate on those challenges
specific to the design space of information planes, or ar-
eas where we suspect that the information plane scenario
may provide opportunities for novel solutions.

Our particular context is the PHI project. PHI aims to
build an information plane for the Internet that can grow
over time to link a wide variety of network data sources
ranging from on-line active and passive measurement sys-
tems, routing databases, routing protocol feeds, intrusion
detection logs and online feeds, and signature detection
systems.

This somewhat ambitious vision comes with
formidable requirements in areas such as scalability,
semantics, and security. The ultimate (possibly unattain-
able) goal of our work is to scale to many millions of
data sources, many millions of data sinks (including most
end-systems), and many millions of concurrent queries.

In the rest of this paper we outline the required func-
tionality of an information plane, give a brief survey of
research projects pursuing this goal, and present lessons
we have learned from our design, implementation, and
deployment over the last year of an information plane on
PlanetLab based on the PIER p2p query processor. These
lessons include the value of having multi-resolution emu-
lation integrated in the development cycle of an informa-
tion plane, mechanisms for validation of the functionality,
and the lack of a commonly accepted semantics for con-
tinuous queries within a dynamic, faulty, heterogeneous
ecology of data streams. Finally, we discuss the addi-
tional research challenges in this area, with some initial
thoughts as to how they might be tackled: security and
fidelity, multiquery optimization, exposing failures, and
the design of information plane protocols.

2. FUNCTION

Having discussed both the applications and the chal-
lenges of an information plane, what does an information
plane actually do? We use the term client to refer to an en-
tity at a particular location in the network which exploits
the functionality of the information plane, and sensor to
denote a specific source of data available to the informa-
tion plane (such as a monitoring process executing on a
particular network node). An information plane accepts
requests for specified data, which we will call queries,
from clients. From a query, the information plane sets up
distributed state to create a flow of data through the infor-
mation plane from appropriate sensors to the client.
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There are therefore two kinds of distributed communi-
cation involved in the operation of an information plane.
One is the data flow itself from sensors to clients. The
second is query signaling: the communication involved
in setting up, maintaining, and ultimately dismantling a
dataflow graph within the information plane’s overlay.
This includes state which is both communication-related
(where data should be routed through the network) and
computation-related (how is should be aggregated, trans-
formed, and otherwise processed en route).

The sheer volume of information and its distribution
imply that the information plane must perform some com-
putation on data rather than simply moving it around the
network. This processing can be classified into 3 main
types:

Filtering of data items includes the traditional rela-
tional algebra operations of projection and selection, but
may also include more complex operations.

Aggregation operations on data can be temporal (such
as a Fourier transform), spatial (such as computing an av-
erage over data from a variety of sensors), or both. They
might be very simple (such as maximum or top- ) or
complex (e.g. data summarization algorithms). Aggrega-
tion computations generally consume more data than they
generate. For this reason, performing aggregation in the
network (rather than at the client) is highly desirable [10]
to reduce the total bandwidth required at the client node.

Finally, correlations of one dataset against another, as
in relational joins of data against each other. Since a
database join is a selection operation on the Cartesian
product of two datasets, correlations have the potential
to produce more data that they consume. Nevertheless,
performing correlation inside the information plane as a
distributed computation is still desirable since it can re-
duce the total bandwidth required at the client node.

An ideal information plane architecture would provide
an extensible dataflow framework into which these oper-
ations can be inserted.

To take a very simple concrete example, a client of
our PlanetLab-based deployment might contact PIER and
submit a query to return the 10 IP source addresses which
have triggered the most Snort rules on PlanetLab recently,
summed over all the nodes running Snort. PIER sets up
computation state in the network to count Snort events
from each source, and routing state to forward the results
up a tree and thence to the client.

Finally, though we have couched this discussion in
traditional database terms, the idea of a relatively static
schema for an information plane is unworkable due to the
size and dynamicity of the system. Consequently, data
integration at query-time—i.e. when information is used,
as opposed to when it is generated—is an additional chal-
lenge. This issue is not simply limited to data types; as we
discuss below, differences in query semantics (confidence

intervals, error distributions, retention policies, etc.) com-
plicate the task greatly.

3. EXISTING WORK

IrisNet [6], Astrolabe [15] and Sophia [16] are early
instances of information planes. IrisNet uses a hierarchi-
cal data model (XML) and a hierarchical network overlay
(DNS) to route queries and data. As a result, it shares the
characteristics of traditional hierarchical databases: it is
best used in scenarios where the hierarchy changes infre-
quently, and the queries match the hierarchy. Astrolabe is
a robust peer-to-peer administratively-hierarchical query
processing system, though its design does not aim to scale
to large numbers of concurrently posed queries or large
numbers of data attributes, and it requires manual topol-
ogy management of participating hosts [14]. Sophia eval-
uates declarative queries expressed in Prolog using dis-
tributed unification. Sophia incorporates space and time
as first-order components of queries to handle very dy-
namic changes in the underlying monitored system with-
out sacrificing the benefits of caching. Achieving perfor-
mance and scalability in Sophia depends on multiquery
optimization of Prolog expressions, currently a hard prob-
lem.

SWORD [12] is a wide-area resource discovery ser-
vice that also tries to deal with complex queries over
the attributes of rapidly changing data sources. SWORD
retrieves subsets of a node population that satisfy con-
straints on individual node attributes and on attributes
among the nodes in the set. A client can also control the
trade-off between query processing cost and result recall
using resource constraints.

Much recent work focuses on the hard problems that
lie beneath an information plane: aggregation, range
searches, and query planning and execution. The
Scalable Distributed Information Management System
(SDIMS) [19] shares many goals with an information
plane, and focuses on how a flexible aggregation frame-
work for data can be built using DHTs. SDIMS enables
administratively isolated aggregation so that clients can
obtain results from within the scope of their local orga-
nization or beyond, at a client-specified granularity. The
work also explores how replication in time and in space
can increase robustness. Along similar lines, Mercury [2]
focuses on another area of functionality, multi-attribute
range searches, by constructing a separate overlay that
splits nodes into hubs, each responsible for maintaining
a distributed ordered index on a set of attributes.

PIER [7] is a distributed relational query processor
built as a P2P system over the Bamboo [13] distributed
hash table (though PIER is agnostic with respect to DHT
implementation). PIER treats a large, widely distributed
set of data sources as a single, loosely-coupled relational
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SELECT F.entryID, F.sourceIP, SUM(P.bytes)
FROM firewallLog F, packetTrace P

WHERE F.sourceIP = P.sourceIP
GROUP BY F.entryID, F.sourceIP
WINDOW F [’1 minute’], P [’1 minute’]

Fig. 1. A simple continuous query (expressed in TelegraphCQ’s query
language [9]). For each firewall log entry that appears, it sums the band-
width sent from the event’s source to all nodes in the system over the
last minute.

database, and differs from many systems in that it can ac-
cept a wide variety of complex query plans. It uses the
underlying DHT for constructing trees used by hierarchi-
cal operators (such as data aggregation) and multicasting
query state, and hashing tuples for indexing, parallelism
(such as distributed join algorithms). In addition, the
DHT can be used to implement distributed range queries.

We have operated a PIER instance on PlanetLab for the
last 12 months, querying data from various PlanetLab sta-
tus sensors, including the SNORT [8] intrusion detection
system, and assorted slice and machine status indicators.
In Section 4 we discuss what we have learned from oper-
ating a small prototype information plane using PIER.

Last but not least, the Knowledge Plane [3] lays out a
broad vision for global self-managing and self-diagnosing
networks. An information plane can be viewed as a some-
what more concrete and tightly scoped step in this direc-
tion.

4. EXPERIENCE

We have operated an instance of the PIER distributed
relational query processor on PlanetLab for the last 12
months. As well as having access to PlanetLab node sta-
tus information, the system has also been able to query
SNORT instances running on each PlanetLab node. This
enables us to issue queries such as “what are the top 10 IP
source addresses triggering Snort alerts across all Plan-
etLab nodes?”, or “what other nodes within my admin-
istrative domain got alerts whose sources match those of
my alerts?” PIER can also query its own internal data
structures (such as Bamboo’s routing table) for diagnos-
tic purposes.

The measurement results from this exercise are beyond
the scope of this paper, but here we present the insights we
have obtained from the experience of building, deploying,
and operating PIER in this scenario, together with their
implications for the design of Internet-scale information
planes.

Multiresolution emulation: Our experience with de-
ploying PIER has been consistent with the conventional
wisdom that debugging is always easier in a controlled
environment. A key lesson in debugging PIER has
been the benefit of a multiresolution emulation approach,

where the complexities of a real deployment can be ap-
proximated in successively more realistic and challenging
stages. As a start, PIER supports a simulation mode that
allows its core query processing code — the same “pro-
duction” code — to run on a message-level discrete-event
simulator of the network of machines. This is invaluable
for identifying early bugs in the distributed logic of query
execution. For example, the simulator helped us realize
that some nodes can receive result tuples before they re-
ceive the corresponding query request.

However, simulation of this level of fidelity typically
catches only a certain class of errors: those triggered by
the aspects of the real world that are convincingly mod-
elled by the simulator. In deployment over a real net-
work, early versions of PIER that worked properly in
simulation produced clearly inaccurate results even for
simple queries. For example, results to simple aggrega-
tion queries — e.g., counting the number of nodes in the
system — fluctuated significantly from minute to minute
even when we knew the population was stable. The use
of Emulab [17] as a controlled emulation of the physi-
cal network was an important next degree of complex-
ity, while preserving the ability to easily inspect the run-
ning system - notably, in discovering bugs in the way that
PIER shipped tuples from node to node in a congestion-
controlled manner. Control over link-level performance
enables a better understanding of the dynamism in the
overlay topology, and the resulting effects on query ex-
ecution.

Finally, the deployment of the system on a real dis-
tributed platform like PlanetLab is important: it drives the
traffic over real links and endpoints with varying and un-
predictable loads, but still allows us to observe and log the
execution of each element in the system, albeit at reduced
levels of reproducibility.

The need for lineage and history: Distributed queries
— even simple ones like that of Figure 1 — can easily
translate into rather involved distributed dataflow com-
putations. While this simple query requires a logical
dataflow pipeline of just two operators — a join and a
grouping+aggregation operator — these are both mapped
onto a multi-hop network, with each of the operators par-
titioned for parallel execution on multiple network nodes.
Even for simple queries like this it can be hard to ensure
that results are correct, timely, and efficiently computed.
When this is not the case, even with multiresolution sim-
ulation capabilities available, it is extremely difficult to
identify the root cause of the problem. A faulty, unreli-
able or grossly inefficient information plane would be of
limited use at best.

With regards to correctness, our experience with PIER
to date suggests that producing a bug-free prototype in-
formation plane is non-trivial. In practice, we approach
the task in a relatively ad hoc way; for example, we exe-
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cute simple continuous queries and check to see if the re-
sults remain stable over time. PIER is also instrumented
with copious local log output. Although these approaches
are useful as debugging tools in the short term, it would
be extremely helpful to formalize and enrich this process,
especially in a way that can validate the correctness of
arbitrary queries.

One promising avenue towards explaining the source
of erroneous results is tracing the lineage of a result, i.e.,
the set of input tuples that affect it [18]. Unfortunately,
tracking result lineage in centralized data warehouses is
hard enough [4], [18]; it becomes significantly more com-
plicated in the real-time distributed setting due to the dy-
namism of the network over which the data flow: routes
may be flapping during query execution, and the set of
nodes participating in the computation may be in flux.
Ascribing the blame to a component or computation step
in the network can be tricky, expensive, and inaccurate.

A possible implementation is to have the system pro-
duce information (either in the dataflow or in system
logs) about the processing, at each step, of specific tuples
through the distributed dataflow. This is analogous to ra-
diology: by introducing a “dye” into the “bloodstream”
of the system, we should be able to observe stages of
the dataflow using the appropriate diagnostic tools. The
“dye” in our case can be specific values in tuples that af-
fect the outputs of operators in known ways, or a special
“trace-this” flag in a tuple’s header that propagates from
input tuples to result tuples during processing. We have
already used a similar, though rather more ad-hoc, tech-
nique in PIER, by means of tuples that record the net-
work path as part of the answer tuple. Correctness is a
critical goal for an information plane, but clearly perfor-
mance is also important. Identifying the source of slow-
downs in the system is somewhat different than identify-
ing correctness bugs. Intuitively, some of the same “radi-
ological” approach may also be applicable. For example,
early on we identified in the PIER deployment a prob-
lem with head-of-line blocking in the event queue, be-
cause the non-preemptible handlers that invoke query ex-
ecution logic did not yield sufficiently often. The problem
was most evident in application level network code which
was sensitive to even small delays. This kind of problem
would be easier to detect if tuples in the system selec-
tively carried a history of the machines, query operators,
and queues they traversed, and the amount of computa-
tion, memory, and storage consumed at each component.

A challenge in both these regards is to avoid the
Heisenberg phenomenon of affecting the system by mea-
suring it. Adding time-stamping calls to the code-path
can affect overall system behavior; adding annotations to
the in-flight tuples can change message sizes, potentially
causing packet fragmentation where none was otherwise
necessary.

Layer interactions: An early PIER prototype repur-
poses the routing information of the underlying overlay
(Bamboo [13]) in order to construct its aggregation graph.
Unfortunately, the aggregation machinery and the rout-
ing machinery operate under different assumptions and
towards different goals. Whereas the overlay aggressively
updates its routing information to ensure low-latency de-
livery of messages, PIER must strive to maintain an ag-
gregation graph for the duration of a query. This incom-
patibility in assumptions lead our early aggregation at-
tempts for even simple node counting queries to wild in-
accuracies, for example right before and during a mas-
sive overlay routing update. The painful lesson learned is
that, though convenient, mechanism reuse must be pref-
aced by appropriate adaptation; in this instance, even if
PIER takes advantage of the DHT to obtain an initial ag-
gregation graph with good network proximity character-
istics, it must store and maintain this graph itself for as
long as it requires that graph.

In a similar vein, queuing of outgoing results in an in-
formation plane node appears to be critical for perfor-
mance. PIER attempts to batch tuples before transmis-
sion, using a variety of heuristics to decide when to send a
message. We are convinced that a feedback-based scheme
which eagerly sends tuples up to the available through-
put between two nodes would provide much better per-
formance.

Semantics: Perhaps the major lesson from our expe-
rience with PIER is the need to define (and provide)
clear semantics for queries. Semantics for continuous
queries is still an uncertain area in the database litera-
ture, only recently receiving attention within the context
of wide-area, loosely coupled environments [1]. With a
widely-distributed information plane, the problem is com-
pounded by the need to trade-off answer quality, latency,
and query cost to the system. How users express flexibly
their preferences with regards to this trade-off is an open
question.

5. RESEARCH DIRECTIONS

Our current work involves designing, implementing,
and deploying a more complete information plane, build-
ing on our experience with PIER. We intend to incorpo-
rate the lessons we’ve learned from PIER in our new sys-
tem; in this section, we discuss additional research direc-
tions we intend to explore.

Security and fidelity: In starting again, it is clear that
the issue of security which was postponed in the design
of PIER has to be fundamental in the new design. Even
a single-authority information plane poses a daunting set
of security-related challenges, which are multiplied in a
federated or peer-to-peer case. Individual information
sources may have requirements for access control and/or
anonymization.

4



Furthermore, whether federated or under a central ad-
ministrative organization, an information plane of any
size has to deal with the possibility of malicious or com-
promised nodes. Malign entities will seek to affect the
correctness and throughput of the information plane, as
well as to use it as a stepping stone for attacks against
other victims on the Internet. While we can take great
care not to introduce vulnerabilities into the implementa-
tion, we must still assume the possibility that nodes will
be compromised sooner or later. Consequently, the infor-
mation plane must be able to detect misbehaving nodes
so that they can be isolated or the results of their com-
putations treated with suspicion. This is a hard problem,
but one promising technique in this regard is the use of
probabilistic spot-checking [5].

In addition to incorrect results (“data poisoning”), an
information plane must also prevent itself being used to
conduct denial of service against other network entities,
for example by distributed rate limiting.

Multiquery optimization: To scale effectively in the
number of simultaneous queries an information plane can
handle, similar queries need to share both communica-
tion and computational resources. This is known in the
database literature as multiquery optimization, and work
so far has focused almost entirely on the centralized case,
with some recent work on continuous queries [11]. The
latter work annotates tuples with bitmaps indicating their
progress through the operator graph of the query, and the
current set of active queries satisfiable by this tuple.

One promising line of inquiry is to port this approach
to the distributed case. This requires a compact represen-
tation of the lineage of the tuple, which can be transmit-
ted with the tuple data between nodes in the information
plane. The design of an efficient representation presents
several challenges, but we note that this would also help
with spot-checking for data fidelity, and validating the
system.

Exposing failures: In a large P2P system like an in-
formation plane, failures can be expected to be common.
Indeed, it is reasonable to assume that at least one com-
ponent of the system will be in a state of failure all the
time. While attempting to work around failures and still
deliver useful results is a goal, the “right thing to do” in
the face of failures is also partly application-specific - for
example, applications might wish to know precisely what
failed, while others might wish to know consequent er-
ror bounds on the results. We feel that an information
plane should expose such failures to clients as part of the
results; trying to mask failures in any way amounts to
imposing undue policy restrictions on clients. We will
look at both how failure semantics can be expressed in
queries and how failure-related information can be com-
bined with query results.

Information planes as protocols: Finally, and perhaps
more importantly, it is clear that an information plane is
more than an implementation. As much as anything, it
is also a set of protocols used by nodes to exchange data
and control information. This in turn raises the question
of interoperability, and the need to defend against badly
behaved, buggy, non-compliant and/or malicious hosts at
the protocol level, a question that existing monitoring sys-
tems (our own included) have hitherto avoided. An aim
of PHI is to define and implement such a protocol suite.

Any information plane protocol suite is like to have at
least two parts. The first is a dataflow signaling protocol
which is used by users and participating nodes to set up
and tear down query state in the system. This amounts to
a signaling protocol for setting up dataflow within the in-
formation plane. Key issues in the design of this protocol
include an external representation of partial query plans.

The second is a tuple transfer protocol which is used
for exchange of data between nodes as part of a dataflow.
A major part of this protocol is an external representation
for tuples, which must not only include the data in the tu-
ple, but enough tuple lineage information to be useful to
multiquery optimization mechanisms and auditing func-
tions.

6. CONCLUSION

Information Planes for large-scale distributed systems,
from PlanetLab to the Internet itself, represent an impor-
tant set of challenges for research, both as driving applica-
tions for distributed systems work and as interesting net-
work services in their own right.

In this paper we have attempted to define the function
of an information plane, and laid out some of the main de-
sign challenges. Our experience operating PIER on Plan-
etLab for the last year has been invaluable in deriving
design principles, but we feel the area contains exciting
challenges for future work, some of which we have at-
tempted to outline.
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