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Abstract

Popular P2P file-sharing systems like Gnutella and Kazaa
use unstructured network designs. These networks typ-
ically adopt flooding-based search techniques to locate
files. While flooding-based techniques are effective for
locating highly replicated items, they are poorly suited
for locating rare items. As an alternative, a wide vari-
ety of structured P2P networks such as distributed hash
tables (DHTs) have been recently proposed. Structured
networks can efficiently locate rare items, but they incur
significantly higher overheads than unstructured P2P net-
works for popular files. Through extensive measurements
of the Gnutella network from multiple vantage points,
we argue for a hybrid search solution, where structured
search techniques are used to index and locate rare items,
and flooding techniques are used for locating highly repli-
cated content. To illustrate, we present experimental re-
sults of a prototype implementation that runs at multiple
sites on PlanetLab and participates live on the Gnutella
network.

1 Introduction

Unstructured networks such as Gnutella [1] and Kazaa [4]
have been widely used in file-sharing applications. These
networks are organized in an ad-hoc fashion and queries
are flooded in the network for a bounded number of hops
(TTL). While these networks are effective for locating
highly replicated items, they are less so for rare items1.

As an alternative, there have been proposals for using
inverted indexes on distributed hash tables (DHTs) [8].
In the absence of network failures, DHTs guarantee per-
fect recall, and are able to locate matches within a small
number of hops (usually �	��

����� hops, where � is the
number of nodes). However, DHTs may incur signifi-
cant bandwidth for publishing the content, and for exe-
cuting more complicated search queries such as multiple-

1In this paper, we will use the terms “files” and “items” inter-
changeably

attribute queries. Despite significant research efforts to
address the limitations of both flooding and DHT search
techniques, there is still no consensus on the best P2P de-
sign for searching,

In this paper, we measure the traffic characteristics of the
Gnutella network from multiple vantage points located on
PlanetLab [6]. Our findings confirm that while Gnutella
is effective for locating highly replicated items, it is less
suited for locating rare items. In particular, queries for
rare items have a low recall rate (i.e., the queries fail to
return files even though the files are actually stored in the
network). In addition, these queries have poor response
times. While these observations have been made before,
to the best of our knowledge, our study is the first to quan-
tify them in a real network. For example, we show that as
many as 18% of all queries return no results, despite the
fact that for two thirds of these queries, there are results
available in the network.

We use extensive measurements to analyze the traffic
characteristics of Gnutella, and based on our observations,
we propose a simple hybrid design that aims to combine
the best of both worlds: use flooding techniques for lo-
cating popular items, and structured (DHT) search tech-
niques for locating rare items.

We find that such a design is particularly appropriate for
existing P2P file-sharing systems in which the number of
replicas follow a long tailed distributions: flooding-based
techniques work best for the files at the head of the dis-
tribution, while DHT techniques work best for the files at
the tail of the distribution.

To evaluate our proposal, we present experimental re-
sults of a hybrid file-sharing implementation that com-
bines Gnutella with PIER, a DHT-based relational query
engine [11]. Our prototype runs at multiple sites on the
PlanetLab testbed, and participates live on the Gnutella
network.
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2 Setting and Methodology

To analyze the Gnutella network, we have instrumented
the Limewire client software [5]. Our client can partic-
ipate in the Gnutella network either as an ultrapeer or
leaf node, and can log all incoming and outgoing Gnutella
messages. In addition, our client has the ability to inject
queries into the network and gather the incoming results.

The current Gnutella network uses several optimizations
to improve the performance over the original flat flooding
design. Some of the most notable optimizations include
the use of ultrapeers [3] and dynamic querying [2] tech-
niques. Ultrapeers perform query processing on the be-
half of their leaf nodes. When a node joins the network as
a leaf, it selects a number of ultrapeers, and then it pub-
lishes its file list to those ultrapeers.

A query for a leaf node is sent to an ultrapeer which
floods the query to its ultrapeer neighbors up to a lim-
ited number of hops. Our crawl reveals that most ultra-
peers today support either 30 or 75 leaf nodes2. Dynamic
querying is a search technique whereby queries that return
fewer results are re-flooded deeper into the network. Our
modified client supports both of these optimizations.

2.1 Gnutella Search Quality

To estimate the size of the Gnutella network, we began
our study by performing a crawl of Gnutella. To increase
the accuracy of our estimation, the crawl was performed
in parallel from 30 ultrapeers for about 45 minutes. This
parallel crawl was carried out on 11 Oct 2003 at around
noon (Pacific time). The network size of Gnutella at the
time of the crawl was around 100,000 nodes, and there
were roughly 20 million files in the system.

Next, we turn our attention to analyzing the search qual-
ity of Gnutella, both in terms of recall and response time.
The recall of a query is defined as the number of results
returned divided by the number of results actually avail-
able in the network. Results are distinguished by file-
name, host, and filesize. Thus, each replica of a file is
counted as a distinct result. Given the difficulty of tak-
ing a snapshot of all files in the network at the time the

2This is confirmed by the development history of the Limewire
software: newer Limewire ultrapeers support 30 leaf nodes and main-
tain 32 ultrapeer neighbors, while the older ultrapeers support 75 leaf
nodes and 6 ultrapeer neighbors. As a side note, in newer versions of
the Limewire client, leaf nodes publish Bloom filters of the keywords
in their files to ultrapeers [7, 2]. There have also been proposals to
cache these Bloom filters at neighboring nodes. Bloom filters reduce
publishing and searching costs in Gnutella, but preclude substring and
wildcard searching (which are similarly unsupported in DHT-based
search schemes.)
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Figure 1: Correlating Query Results Size vs. Average Replica-
tion Factor.

query is issued, we approximate the total number of re-
sults available in the system by issuing the same query si-
multaneously from all 30 PlanetLab ultrapeers, and taking
the union of the results. This approximation is appropri-
ate for the following two reasons. First, as the number of
PlanetLab ultrapeers exceeds 15, there is little increase in
the total number of results (see Figure 3). This suggests
that the number of results returned by all 30 ultrapeers is
a reasonable approximation of the total number of results
available in the network. Second, because this approxi-
mation underestimates the number of total results in the
network, the recall value that we compute is an overesti-
mation of the actual value.

We obtained Gnutella query traces, and chose 700 dis-
tinct queries from these traces to replay at each of the
PlanetLab ultrapeers. To factor out the effects of work-
load fluctuations, we replayed queries at three different
times. In total, we generated ����������� queries ( �������������
� ). We make three observations based on the results re-
turned by these queries.

First, as expected, there is a strong correlation between
the number of results returned for a given query, and the
number of replicas in the network for each item in the
query result set. The replication factor of an item is de-
fined as the total number of identical copies of the item
in the network. Again, to approximate this number, we
count the number of items with the same filename in the
union of the query results obtained by the 30 ultrapeers
for the same query. We then compute the average repli-
cation factor of a query by averaging the replication fac-
tors across all distinct filenames in the query result set.
Figure 1 summarizes our results, where the Y-axis shows
query results set size, and the X-axis shows the average
replication factor averaged across all queries for each re-
sults set size. In general, queries with small result sets
return mostly rare items, while queries with large result
sets return both rare and popular items, with the bias to-
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Figure 2: Result size CDF of Queries
issued from 30 Ultrapeers.
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Figure 4: Correlating Result Size vs.
First Result Latency.

wards popular items.

Second, our results demonstrate the effectiveness of
Gnutella in finding highly replicated content. Figure 2
plots the CDF of the number of results returned by all
queries (the Results curve), and a lower bound on the to-
tal number of matching items per query (the Total Results
curve). We compute this lower bound by taking the union
of all result sets obtained by the 30 ultrapeers for each
query. Note that there are queries returning as many as
1,500 results, which would seem more than sufficient for
most file-sharing uses. In addition, Figure 4 shows that
the queries with large result sets also have good response
times. For queries that return more than 150 results, we
obtain the first result in 6 seconds on average.

Third, our results show the ineffectiveness of Gnutella
in locating rare items. Figure 4 shows that the average
response time of queries that return few results is poor.
For queries that return a single result, 73 seconds elapsed
on average before receiving the first result.

An important point to note is that queries that return
few items are quite prevalent. Figure 3 shows the results
of the same experiment as Figure 2, limited to queries
that return at most 20 results for 5, 15 and 25 ultrapeers.
Note that while 29% of queries receive more than 100
results, and 9% receive more than 200 results, there are
41% of queries that receive 10 or fewer results, and 18%
of queries that receive no results. For a large fraction of
queries that receive no results, matching results are in fact
available in the network at the time of the query. Taking
the union of results from all 30 ultrapeers for each query,
the results improve considerably: only 27% of queries re-
ceive 10 or fewer results, and only 6% of queries receive
no results. This means that there is an opportunity to re-
duce the percentage of queries that receive no results from
18% to at least 6%, or equivalently to reduce the number
of queries that receive no results by at least 66%. We say
“at least” because the union of results is an underestima-

tion of the total number of results available in the network.

2.2 Increase the Search Horizon?

An obvious technique to locate more rare items in
Gnutella would be to increase the search horizon using
larger TTLs. While this would not help search latency,
it could improve query recall. As the search horizon in-
creases, the number of query messages sent will increase
almost exponentially. Given that queries that return few
results are fairly common, such aggressive flooding to lo-
cate rare items is unlikely to scale. In future work, we plan
to quantify the impact of increasing the search horizon on
the overall system load.

2.3 Summary

Our Gnutella measurements reveal the following findings:
$ Gnutella is highly effective for locating popular

items. Not only are these items retrieved in large
quantities, the queries also have good response
times.

$ Gnutella is less effective for locating rare items: 41%
of all queries receive 10 or fewer results, and 18% of
queries receive no results. Furthermore, the results
have poor response times. For queries that return a
single result, the first result arrives after 73 seconds
on average. For queries that return 10 or fewer re-
sults, 50 seconds elapsed on average before receiv-
ing the first result.

$ There is a significant opportunity to increase the
query recall for locating rare items. For instance,
the number of queries that return no results can be
reduced from 18% to at least 6%.

Thus, there are a considerable number of queries for rare
items, and there is a considerable opportunity to improve
the recall and response times of these queries. Further-
more, we note that flooding more aggressively is not an
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answer to this problem, as flooding with a higher TTL
will not necessarily decrease the response time, and will
significantly increase the system load.

3 The Case for Hybrid

Various research efforts have proposed DHTs as an al-
ternative to unstructured networks like Gnutella, arguing
that DHTs can improve query performance. In this sec-
tion, we explore the feasibility of a DHT-based query sys-
tem. In a flooding scheme, queries are moved towards
the data. In contrast, DHT-based search schemes move
both queries and data, causing them to rendezvous in the
network. This movement typically consists of two phases.
First, a content publishing phase moves copies of data into
traditional inverted files which are then indexed by key-
word in a DHTs. They are also known as inverted indexes.
Each inverted file comprises a set of unique file identifiers
(a posting list) for a distinct keyword. Secondly, a query
execution phase performs boolean search by routing the
query via the DHT to all sites that host a keyword in the
query, and executing a distributed join of the postings list
entries of matching items.

While DHT-based search provides perfect recall in the
absence of network failures, a full-fledged DHT imple-
mentation has its own drawbacks. The content publish-
ing phase can consume large amounts of bandwidth com-
pared to queries that retrieve sufficient results via flooding
in an unstructured network. Consider the query “Britney
Spears” that requests all songs from this popular artist.
“Britney” and “Spears” are popular keywords with large
posting lists. The publishing costs of building the inverted
indexes for these two keywords are high. A “Britney
Spears” query also requires shipping large posting lists to
perform the distributed join. Recent back-of-the-envelope
calculations [12] suggest that shipping large posting lists
over DHTs is bandwidth-expensive. While compression
techniques and Bloom filters would reduce the bandwidth
requirements of publishing, a flooding scheme that does
not incur any publishing overheads is both simpler and
more efficient for such queries.

On the other hand, queries over rare items are less
bandwidth-intensive to compute, since fewer posting list
entries are involved. To validate the latter claim, we re-
played 70,000 Gnutella queries over a sample of 700,000
files3 using a distributed join algorithm over DHTs [11].
We observed that on average, queries that return 10 or
fewer results require shipping 7 times fewer posting list

3These queries and files were collected from 30 ultrapeers as de-
scribed in Section 2.1.

entries compared to the average across all queries. This
motivates a hybrid search infrastructure, where the DHT
is used to locate rare items, and flooding techniques are
used for searching highly replicated items.

3.1 Hybrid Techniques

The hybrid search infrastructure utilizes selective publish-
ing techniques that identify and publish only rare items
into the DHT. Different heuristics can be used to identify
which items are rare. One simple heuristic is based on our
initial observation in Section 2.1: rare files are those that
are seen in small result sets. In essence, the DHT is used
to cache elements of small result sets. This scheme is sim-
ple, but suffers from the fact that many rare items may not
have been previously queried and found, and hence will
not be published via a caching scheme. For these items,
other techniques must be used to determine that they are
rare. For example, publishing could be based on well-
known term frequencies, and/or by maintaining and pos-
sibly gossiping historical summary statistics on file repli-
cas.

This hybrid infrastructure can easily be implemented
if all the ultrapeers are organized into the DHT overlay.
Each ultrapeer is responsible for identifying and publish-
ing rare files from its leaf nodes. Search is first performed
via conventional flooding techniques of the overlay neigh-
bors. If not enough results are returned within a prede-
fined time, the query is reissued as a DHT query.

3.2 Network Churn

A practical concern of using DHTs is the network churn.
A high network churn rate would increase the DHT main-
tenance overhead to manage publishing (and unpublish-
ing). To understand the impact of churn, we measure the
connection lifetimes of ultrapeer and leaf neighbors from
two leaf nodes and two ultrapeers over 72 hours. The con-
nection lifetimes we measure are a lower bound on the
session lifetime as nodes may change their neighbor sets
during the course of their Gnutella session. We make the
following two observations.

First, the measured average connection lifetimes of leaf
and ultrapeer nodes are 58 minutes and 93 minutes re-
spectively. Ultrapeers have 1.5 times longer lifetimes than
leaf nodes. To reduce the overheads of DHT maintenance,
only stable ultrapeers with more resources should be used
as DHT nodes.

Second, the measured median connection lifetimes of
leaf and ultrapeer nodes are only 13 minutes and 16 min-
utes respectively. Since the median lifetime is much lower
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than the mean, by discounting the short-lived nodes we
have a fairly stable network. For instance, if we eliminate
all leaf nodes whose lifetimes exceed 10 minutes, the av-
erage lifetime of the remaining nodes is 106 minutes4 . In
general, the longer a node is up, the longer one can expect
a node to stay up. Hence, to address the issue of stale data
in the DHT, file information of short-lived nodes should
simply not be indexed. These short-lived nodes are not
useful sources of data anyway since they are likely to dis-
connect before others can download their content.

4 Preliminary Experimental Results

To evaluate our hybrid design, we deploy a number of hy-
brid clients on PlanetLab that participate on the Gnutella
network as ultrapeers. In addition, these clients are
plugged into a DHT-based search engine built on top of
PIER [11], a P2P relational query engine over DHTs.
Our deployment should be seen as a strawman; a fully-
deployed hybrid infrastructure would require an upgrade
of all existing clients.

In addition to the traditional distributed join algorithm
discussed earlier for searching, the PIER search engine
also utilizes Join Indexes, by storing the full text (i.e. the
filename) redundantly with each posting list entry. The
search query is hence sent only to a single node host-
ing any one of the search terms, and the remaining search
terms are filtered locally. This technique incurs extra pub-
lishing overheads, which are prohibitive for text docu-
ment search, but tolerable for indexing short filenames.

Each hybrid ultrapeer monitors query results from its
regular Gnutella traffic. These query results are responses
to queries forwarded by the ultrapeer. Query results that
belong to queries with fewer than 20 results are then pub-
lished into the DHT. The publishing rate is approximately
one file per 2-3 seconds per node. Each published file
and corresponding posting list entries incurs a bandwidth
overhead of 3.5 KB per file. Join Indexes increase the
publishing overhead to 4 KB per file. A large part of the
bandwidth consumption is due to the overheads of Java
serialization and self-describing tuples in PIER, both of
which could in principle be eliminated.

We test the hybrid search technique in PlanetLab on leaf
queries of the hybrid ultrapeers. Leaf queries that return
no results within 30 seconds via Gnutella are re-queried
using the PIER search engine. PIER returns the first result
within 10-12 seconds, with and without Join Indexes re-
spectively. While decreasing the timeout to invoke PIER

4This is consistent with the results reported by Limewire’s mea-
surements of 300 connections over several days[7].

would improve the aggregate latency, this would also in-
crease the likelihood of issuing extra queries. As part
of our future work, we plan to study the tradeoffs be-
tween the timeout and query workload. Note that the av-
erage latency for these queries to return their first result in
Gnutella is 65 seconds (see Figure 4). Hence, the hybrid
approach would reduce the latency by about 25 seconds.

In addition, the hybrid solution reduces the number of
queries that receive no results in Gnutella by 18%. This
reduction serves as a lower bound of the potential benefits
of the hybrid system. The reason why this value is sig-
nificantly lower than the potential 66% reduction in the
number of queries that receive no results is two fold:

$ Unlike Gnutella measurements reported in Section
2.1 where queries are proactively flooded from many
ultrapeers, in our experiment, we consider only the
files that are returned as results to previous queries.
Thus, this scheme will not return the rare items
that were not queried during our experiments. Em-
ploying simple optimizations in which peers publish
proactively their list of rare items should consider-
ably boost the benefits of our scheme.

$ As the number of clients that implement our scheme
increase, we expect the coverage to improve as well.
The coverage would be even better in a full-fledged
implementation in which each ultrapeer would be re-
sponsible for a set of leaf nodes from which they
would identify and publish rare items.

Using Join Indexes, each query needs to be sent to only
one node. The cost of each query is hence dominated by
shipping the PIER query itself, which is approximately
850 B. The distributed join algorithm incurs a 20 KB over-
head for each query. These results indicate that the bene-
fits of reducing per-query bandwidth might outweigh the
publishing overheads of storing the filename redundantly,
which makes Join Indexes a more attractive option.

5 Related Studies

A recent study [9] has shown that most file downloads
are for highly replicated items. One might think that their
findings contradict our analysis in Section 2.1 that shows
that queries for rare items are substantial. However, the
two studies focus on different aspects of Gnutella’s work-
load. First, we measure result set sizes of queries, while
their study measures download requests. Downloads only
reflect successful queries, in instances when users have
identified matching items from the result set that satisfied
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their search queries. This approach excludes queries that
failed to find matching rare items even when they exist
somewhere in the network, or return too few results that
are of relevance to the search query. Second, both studies
correctly reflect different aspects of the Zipfian distribu-
tions. Their study shows the head of the Zipfian popu-
larity distribution, and hence they measure the download
requests based on the items that match the top 50 query
requests seen. In contrast, our study focuses on the long
tail of the distribution as well. While individual rare items
in the tail may not be requested frequently, these queries
represents a substantial fraction of the workload, and are
worth optimizing.

A separate study [10] has shown that the popularity dis-
tribution of a file-sharing workload is flatter than what we
would expect from a Zipfian distribution. The most popu-
lar items were found to be significantly less popular than
a Zipfian distribution would predict. Our proposed hybrid
infrastructure would still apply here, utilizing flooding-
based schemes for items in the “flattened head” region,
and DHTs for indexing and searching for items in the tail
of the distribution.

6 Conclusion

In this paper, we have presented the case for a hybrid
search infrastructure that utilizes flooding for popular
items and the DHT for searching rare items. To support
our case, we have performed live measurements of the
Gnutella workload from different vantage points in the In-
ternet. We found that a substantial fraction of queries re-
turned very few or no results at all, despite the fact that the
results were available in the network. Preliminary exper-
imental results from deploying 50 ultrapeers on Gnutella
showed that our hybrid scheme has the potential to im-
prove the recall and response times when searching for
rare items, while incurring low bandwidth overheads.
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