
FREddies: DHT-Based Adaptive Query Processing
via FedeRated Eddies

Ryan Huebsch and Shawn R. Jeffery
EECS Computer Science Division, UC Berkeley

{huebsch, jeffery}@cs.berkeley.edu

Report No. UCB/CSD-4-1339

July 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720



FREddies: DHT-Based Adaptive Query Processing
via FedeRated Eddies

Ryan Huebsch and Shawn R. Jeffery
EECS Computer Science Division, UC Berkeley

{huebsch, jeffery}@cs.berkeley.edu

July 2004

Abstract

In response to the ever increasing scale, distribu-
tion, and complexity of data processing, database re-
search in the past few years has focused on adap-
tive query processing. However, many of these
solutions, although aimed at processing wide-area
data, remain centralized solutions. In this paper,
we present FREddies, an extension of the central-
ized Eddy operator for use in a P2P query process-
ing system. FREddies operate within the framework
of PIER, a DHT-based P2P query processor. FREd-
dies optimize the query during runtime and require
no global knowledge. We show that FREddies us-
ing rudimentary routing policies can perform com-
petitively with a traditional static query optimization
approach. Furthermore, we validate our simulation
results in the real world environment of PlanetLab.

1 Introduction

As society progresses further into the information
age, the corpus of online information is quickly ex-
panding, seemingly without bounds. Current tech-
nology is only able to provide simple (keyword)
query facilities. Distributed query systems are begin-
ning to appear; however their usefulness is limited by
their ability to execute complex queries efficiently in

the wide-area.

The PIER project [7], a peer-to-peer (P2P) re-
lational query processor, is designed for complex
querying at a global scale. However, due to the com-
plex nature of the data and the queries, query op-
timization methods from previous peer-to-peer sys-
tems are not useful. Furthermore, the fully decen-
tralized nature of PIER limits the applicability of tra-
ditional database optimization techniques [11]. Fi-
nally, data sources in the wide area exhibits widely
changing characteristics: sources may be slow, have
bursts, or be unresponsive.

The emergence of adaptive query processing, most
notably of which is the Eddy [2], shows great
promise for applications in a P2P environment. An
Eddy is able to dynamically adjust the flow of tu-
ples through the query plan, thus reacting at runtime
to fluctuations in data arrival rate, data distributions,
and available resources. Until now, the Eddy op-
erator has been implemented only in a centralized
database system [4].

We have developed the FREddy (FedeRated
Eddy) to perform query optimization in PIER. A
FREddy is a query plan operator that dynamically
routes tuples through local operators (some of which
may send the tuple to another node in the network).

1



Through its routing choices, the FREddy is able to
decide a query plan for each tuple on-the-fly.

Although the FREddy may not be as efficient
as some centralized solutions, we explore its bene-
fits when implemented from a P2P purist’s perspec-
tive. Developing equivalent centralized solutions
are likely to encounter numerous engineering chal-
lenges, such as maintaining a global dynamic cata-
log. True P2P systems subvert this engineering chal-
lenge by sacrificing the need for global knowledge
(and efficiency in some cases).

As an initial implementation and study, we focus
on showing the feasibility of FREddies for adaptive
query processing in a P2P query processor. Our con-
tributions are:

• Develop and implement the FREddy mecha-
nism within the PIER system

• Evaluate the FREddy’s base performance and
overhead through a comparison with possible
static plans

• Show the potential for complex routing policies
by demonstrating the benefit of a simple routing
policy’s performance above the baseline

The remainder of the paper is structured as fol-
lows. Section 2 details other research efforts in dis-
tributed query processing. Background on both the
PIER system and the Eddy operator is given in Sec-
tion 3. Section 4 presents the FREddy operator and
its functionality within PIER. Section 5 briefly in-
troduces a variety of routing policies. We present
our experimental results in Section 6 and conclude
in Section 7.

2 Related Work

Related research can be divided into two categories:
distributed optimization and centralized adaptive
query processing.

SwAP (Scalable and Adaptable query Processor)
[16] is also based on the Eddy. To replicate the lot-
tery scheme introduced in the original Eddy paper
[2], they introduce the concepts ofremote operator
andvirtual tuple. The virtual tuple provides explicit
feedback to the Eddy about selectivities of remote
operators. FREddies are similar to SwAP, however
we are able to harness the horizontal partitioning of
the DHT. SwAP has an initial preparatory phases
which is centralized, FREddies have no equivalent
process.

In [13], the authors explore various routing poli-
cies for distributed Eddies. Their focus is on rout-
ing policies between distributed operators, not a full
implementation of Eddies. Their effect on perfor-
mance in a static setting. Their results will be useful
in developing routing polices for FREddies. In addi-
tion their work focuses on vertical parallelism, while
FREddies are able to take advantage of both horizon-
tal and vertical parallelism.

Adaptive query processing for centralized systems
has been addressed by work including [4, 14, 8]. The
Telegraph project uses the Eddy to perform query op-
timization. The project is focused on multi-query op-
timization over heterogeneous streams. FREddies is
the natural extension of their work.

Query scrambling is a technique for changing the
query plan during processing. Periodically during
processing, the query can be re-optimized. Execu-
tion is temporarily stopped and the plan is changed
(some cleanup work must also be performed). Each
query optimization still utilizes traditional central-
ized techniques; however, catalog information may
be updated between each optimization.

Finally, the Tukwila project uses adaptive tech-
niques for processing XML streams in a central-
ized system. Their work utilizes incremental re-
optimization for multi-query optimization.

2



3 Background

In this section we introduce the reader to PIER and
the Eddy.

3.1 PIER

PIER is a fully decentralized query processor de-
signed to scale from thousands to millions of nodes.
PIER sacrifices some traditional database features
such as storage and transactions and focuses solely
on query processing.

Designed for P2P environments, PIER is a best-
effort system. Ensuring consistency (such as ACID)
is prohibitively expensive in the wide-area. In addi-
tion, P2P applications are unlikely to depend on pre-
cise answers. Here we briefly describe PIER’s foun-
dations. For further reading on PIER and its func-
tionality, please see [7].

One of the key design features of PIER is the use
of a distributed hash table (DHT) as the communica-
tion substrate. DHTs form an overlay routing layer
where data can be directly addressed instead of just
nodes. Objects (messages) are assigned a key, usu-
ally by hashing its name or the contents. The ob-
ject (message) is then stored (routed) to the node cur-
rently responsible for that key. The mapping of keys
to nodes is dynamically maintained in the presence
of nodes entering and leaving the system.

To achieve scalability, each node maintains infor-
mation about a small subset other nodes. Routing is
then achieved via a DHT specific algorithm that re-
quires multiple hops [1, 9, 12, 10, 15]. In most cases,
the number of hops is bounded by the logarithm of
the number nodes in the system.

PIER is a generic data flow engine; however, it
was designed for executing relational queries. A key
advantage of relational systems is the ability to spec-
ify queries in a declarative language such as SQL.
Like a traditional database, queries must be parsed
and optimized to create a physical query plan which

can be executed. The physical query plan speci-
fies exactly which operators are used and the order
and interconnection between them. Relation queries
can be executed in a number oflogically equivalent
ways. For the correct processing of some operators,
a tuple may be moved from one node to another node
1.

Previous to this work, PIER had no form of op-
timization and required the user to submit a pre-
optimized query plan.

3.2 Eddy

A substantial portion of a database system is ded-
icated to the optimization stage. Poorly optimized
queries can execute orders of magnitudes slower than
good plans. Optimizers utilize the system catalogs
which contain statistics about tables and columns to
assist in choosing the query plan.

For example, consider the following query:

SELECT *
FROM R, S, T

WHERE R.a = S.b AND
S.c = T.d;

There are two possible join orders, compute the
join of R andS first followed byT , or computeS
join T followed byR (a diagram of these plans can
be found in Figure 3). Although both plans are log-
ically equivalent, the best ordering is generally the
one that produces the fewest intermediate results. As
the number of tables in the query are increased, the
number of possible join orders grows exponentially.

The Eddy eliminates the need to choose a static
ordering. An Eddy operator is placed between all of
the operators. Figure 1 illustrates a simple query plan

1One such case is processing joins, where the tuple may have
to be sent to the node responsible for a particular join value. For
example, a join betweenR andS on R.a = S.b, all R tuples
with valuex in fielda must be sent to the same site as allS tuples
with valuex in field b (recall the join condition isR.a = S.b).

3



Figure 1:A centralized Eddy performing a four table join
and one selection. One of the tables,U , is accessed via an
index. Image is from [2].

with an Eddy. When a tuple arrives at the Eddy, the
Eddy consults arouting policyto determine the next
operator that should receive the tuple.

In order to enable tuples to be routed individu-
ally, each tuple must have some additional state with
which it is associated. At a minimum this state in-
cludes a bitmap ofDoneBits. Each bit represents
an operator in the plan. The bits are initially unset
(0). When a tuple is processed by an operator the ap-
propriate bit is set (1). When all of the bits are set,
the tuple can be routed to the output.

By itself, the Eddy will not insure correctness.
Each of the joins must be carefully executed to in-
sure all results are produced. The interested reader
is invited to read [2]. For the purposes of this pa-
per, PIER’s use of hash-based ripple join algorithms
suffices to insure correctness.

4 FREddies

Standard optimizers require access to a catalog of
statistics. These statistics reflect size, distribution,
and location of data. As mentioned earlier, one of

the primary tenants of PIER is its purist P2P na-
ture. A centralized catalog would not satisfy that re-
quirement. Therefore, any optimizer used with PIER
should also be decentralized.

It is conceivable to construct a distributed cata-
log, however this poses a number of additional chal-
lenges. Maintaining consistency in a distributed cat-
alog can become expensive in the face of many up-
dates. Such a catalog would also have to be contin-
uously accessible, otherwise new queries could not
be optimized. Finally, the entire catalog must be
viewable to insure the optimizer can choose a good
plan. If only partial information is available the op-
timizer is more likely to make an invalid assumption
and produce a poor plan. Based on [3], such a dis-
tributed catalog is not possible. The catalog must be
consistent, available, and tolerate partitioning. The
CAP principle states that only two of the three prop-
erties are achievable at any given time. Even if a dis-
tributed catalog were feasible, it still does not solve
the optimization problem completely.

An important challenge with designing wide-area
systems is tolerance for dynamic conditions. During
query execution, network links go down or become
congested or real-time data streams may vary in data
makeup. Thus, assumptions made at the beginning
of the query may not hold through the lifetime of the
query.

A P2P environment also implies that nodes are
heterogeneous in processing capabilities, which may
change from one moment to the next. Furthermore,
nodes are constantly entering and leaving the net-
work (churn). Thus the availablecomputeresources
are constantly changing. A query engine must adapt
by changing the locations where queries are pro-
cessed.

In addition to changing data and processing condi-
tions, there is no guarantee that those conditions are
uniform across all nodes. It is likely that local con-
ditions in one part of the network are different from

4



Figure 2: An example of FREddy query plan perform-
ing a three table join. For simplicity some operators have
been removed. In this example, the FREddy may route
to local operators (joins) or rehash tuples to other nodes
(put ) for processing. In this case, the FREddy’s main
decision is to whichput (RS or ST) to send a tuple.

the global conditions. A query plan that is optimal
on some nodes may be unacceptable for other nodes.

For all of these reasons, an adaptive query proces-
sor is the best solution for a distributed query sys-
tem. The Eddy is a natural solution since it was
designed for heterogeneous/federated data sources.
Based on the Eddy, we have developed the FREddy,
a distributed version of the Eddy.

4.1 Query Processing with the FREddy

In essence, a FREddy is a local routing operator
which moves tuples between operators. An opera-
tor may accept tuples for processing and/or return (or
create) tuples for additional processing. The FREddy
is placed in the middle of the query plan such that it
intercepts any tuples an operator has outputted, and
sends it to another operator. A unique instance of the
FREddy is executed on every node processing the
query. Each FREddy will make independent rout-

ing decisions. See Figure 2 for an example FREddy
query.

The first phase in FREddy-based query process-
ing is plan creation. The origin node determines
which operators are necessary to execute a query as
well as computes the possible operator routing or-
ders. In essence, this step creates a join spanning
tree that avoids cross-products, which are logically
valid but almost always inefficient. Using our ongo-
ing 3-way join example, anR tuple should not be
processed by theST -join until it is processed by the
RS-join. However anS tuple may be processed by
either theRS-join or theST -join in either order. The
acceptable order information is encoded in the query
plan.The same query plan is used by all nodes par-
ticipating in the query. In this way, all nodes share
execution information and processing is simplified.

The query is then disseminated in the same man-
ner as any other query in PIER. Once a participat-
ing node receives a query, it instantiates all opera-
tors including the FREddy. Inter-operator data pipes
are created connecting each operator to the FREddy.
The FREddy then begins dataflow by requesting tu-
ples from each of its sources.

In order to support per-tuple routing, each tuple
in a FREddy-based query plan is tagged with meta-
data indicating the operators it has been processed
by. The FREddy operator (and not each subordi-
nate operator) does the metadata management, thus
allowing a FREddy to be used with any existing op-
erator without modification.

This metadata, referred to as theDoneBits, is a
bit array of lengthN , whereN is the number of oper-
ators that accept tuples in the query. For the average
query, the metadata will be on the order of one or
two bytes. When a new tuple arrives into the Eddy
(one with no metadata) the FREddy tags the tuple’s
metadata with an emptyDoneBits array.

When a tuple arrives at the FREddy, the
DoneBits and the routing policy are consulted to

5



determine the next operator. We discuss the routing
policy in more detail in Section 5. Some operators
may be network I/O operators, which move tuples
between FREddies (nodes). In this way, network
messages are abstracted from the FREddy, such as
in [6]. Since each FREddy was initialized the same,
this is a seamless process.

When allDoneBits of a tuple are set, the tuple is
routed to the output operator which returns the tuple
to the origin.

5 Routing Policies

The routing policy is used to determine the next op-
erator for a tuple. At a minimum, the routing policy
is able to use each tuple’s metadata to make its de-
cision. However, the policy may also keep statistics
and even communicate with other nodes to improve
the quality of its decisions.

In many cases the routing policy will be optimized
to be efficient for some metric, such as through-
put, response time, or resource consumption. In
PIER, the bottleneck resource is almost always net-
work communication. We expect that many policies
will be optimized to reduce network communication
which should benefit both response time and system
throughput.

One straightforward heuristic is for the routing
policy to insure that a tuple is processed through all
applicable local operators before sending the tuple to
an operator that may send it over the network2.

The design space for potential routing policies is
large. We only discuss two simple policies and intro-
duce one slightly more complicated routing policies
to show the potential for smarter policies. More com-
plicated policies are beyond the scope of this initial
paper.

2Although this may seem to bealwayscorrect, it is possible
that a local operator may create more work (i.e. tuples) for fu-
ture processing. Thus it is possible that always routing to local
operators is short sighted.

5.1 Static Policy

The simplest routing policy is one where the FREddy
chooses the next operator based on the order speci-
fied in the query. The primary usages for this policy
are debugging the FREddy code and determining the
overhead of the FREddy mechanism.

5.2 Random Policy

A random routing policy is the simplest dynamic pol-
icy. The policy will choose the next possible local
operator at random. Only after all applicable local
operators have processed the tuple will the policy
send the tuple to an operator that will send the tuple
over the network.

The effect of this policy is that roughly equal num-
bers of tuples will be routed through every possi-
ble join ordering. Therefore, this plan is expected
to have average performance; it will be faster than
the worse plans but slower than the best plans. It is
important to note that in a P2P environment without
accurate, global knowledge, this is an acceptable op-
tion, although obviously not optimal.

5.3 Queue Length Policy

As an illustrating example of both the potential and
complexities of routing policies, we introduce the
Queue Length (QL) routing policy. By observing
information available locally, this policy attempts to
learn global conditions.

Suppose each operator in the system had an
ingress queue. For operators such as selection, pro-
jection, and join, the queue length would represent
the number of tuples the FREddy has routed to that
operator, but the operator has not processed yet. For
operators such asput which involve network op-
erations, the queue length represents the number of
tuples currently waiting to be sent, in-flight, or are
waiting for the DHT at the remote node.

A routing policy that monitors the queue length
of local put operators will be able to provide better

6



load balancing and overall performance by estima-
tion of a variety of query and data characteristics.

A growing queue for aput operator is an indica-
tion that either the intervening network is congested
or the remote node has not been able to keep up
with the influx of tuples. Therefore, queue length
for theput operator is an indirect means of measur-
ing the load on the network and remote node. For
example, suppose theRS-join is expensive, and pro-
duces many more tuples than its input, while the
ST -join is highly selective and its output is small.
Nodes that are processing theRS-join are likely to
be more heavily loaded and doing more network
communication, i.e. moving the joined tuples to
other nodes after processing, while the nodes run-
ning theST -join will be doing less work and com-
munication. Therefore, nodes processing theST -
join should have shorter queue lengths and it is de-
sirable to route tuples to it first.

Furthermore, monitoring the queue length for
put s allows the FREddy to estimate the global dis-
tribution of the join key. Because FREddies run over
a DHT, a tuple is hashed on its join key, which routes
the tuple to the node responsible for that join bucket.
This has the effect of sending all tuples of equal value
to a single node. Thus, if the cardinality of distinct
join keys for a particular relation is small, many tu-
ples will be rehashed to a small number of nodes.
This will cause these nodes’ queues to grow if they
cannot handle the large number of incoming tuples.
For load balancing purposes, tuples should be routed
away from these nodes.

Additionally, such a join key distribution is usu-
ally an indication that a join that will produce a large
number of results. Ideally, tuples should be sent else-
where in hopes they will be discarded before being
sent to such a join.

Our QL routing policy is based on these premises.
We assume it is always best to process to local oper-
ators first before sending the tuple over the network.

Thus the policy will only maintain queue lengths for
theput operators. A counter is stored for eachput
operator. The counter is incremented with every tu-
ple routed to the operator, and decremented when the
DHT returns the acknowledgment that theput has
been completed successfully.

When choosing between multipleput operators,
the FREddy will route the tuple to the operator with
the shortest queue length. We show in Section 6 that
this capable of performing noticeably better than the
random policy.

6 Experimental Results

We implemented the FREddy operator and the above
routing policies in Java as part of the PIER query
operator framework. Overall, the FREddy code was
approximately 500 lines of non-commented source
statements, while PIER has about 5000 lines total.

To determine the viability of our approach, we
measured FREddy performance in PIER. The goals
of our experiments are three-fold:

1. Determine the overhead that the FREddy mech-
anism imposes

2. Compare the FREddy performance to that of a
static query optimizer

3. Determine how FREddies perform in a real-
world environment

For the bulk of our experiments, we used the use
the PIER network simulator. The simulator is able
to model message-level network delays and clock
timers. CPU processing costs are not modeled; how-
ever, we expect network costs to dominate process-
ing costs in our system. The network topology was
a simple star-topology where congestion is modeled
for the inbound and outbound traffic on each node. It
is assumed the middle of the network has been over-
provisioned. The latency between nodes was set at
100ms.

7



Figure 3:Enumerations of the possible join orderings for
a 3 table join query.

For our simulations, we ran 256 PIER nodes run-
ning over Chord. Chord was selected for the DHT
layer mainly because it is faster to simulate. Al-
though our simulator could handle more nodes and
more complex topologies, the goal of our experi-
ments was to show the feasibility of FREddies, not
their scalability.

We ran two different queries, one three table join
and one four table join:

SELECT *
FROM R, S, T

WHERE R.a = S.b AND
S.c = T.d;

and

SELECT *
FROM R, S, T, U

WHERE R.a = S.b AND
S.c = T.d AND
T.e = U.f;

There are two possible join orderings for the first
query and five for the second query. We enumerate
the plans in Figure 3 and 4.

For the 3-way join query, theRS-join was de-
signed to create many output tuples, having a selec-
tivity of 25 (each input tuple will match 25 other tu-
ples) and 10% of theR andS tuples will not find
any matches. TheST -join was designed to highly
selective, having a selectivity of 2 and 60% of theR

Figure 4:Enumerations of the possible join orderings for
a 4 table join query

andS tuples were discarded. Thus, an oracle would
choose to execute theST join first to eliminate as
many tuples as possible before sending the output to
theRS join.

For the 4-way join, theST join was the expensive
join, producing 10 tuples for each input. TheRS
and TU joins were cheaper, producing 1 tuple for
40% of its inputs and 2 tuples for 60% of its inputs,
respectively. The optimal plan is to execute theRS
join first, followed by theST and finallyTU (cross
products are avoided). Each table is preloaded with
256,000 tuples (100 tuples per node).

6.1 Base Performance

Our first experiment was to measure the overhead of
using the FREddy. We ran the 3-table join with both
the RST and the FREddy with the static routing pol-
icy configured to execute the same as the RST plan.

Our simulation is only able to quantify the cost
of the additional metadata that must travel with the
tuple over the network. Although the FREddy may
require more CPU cycles our simulator does not cap-

8



Figure 5:Completion time for the 3-way join at various
node bandwidths

ture those costs3. Furthermore, it has been shown
in [5] that, correctly implemented, the Eddy mecha-
nism imposes negligible processing overhead.

Our simulation shows that the RST uses 159MB
of aggregate network traffic, while the FREddy uses
186MB. There is approximately 70 bytes of over-
head for each tuple due to the metadata. Note that
this is an unoptimized implementation and it is ex-
pected that this number can be decreased.

Our next two experiments show that the FREddy
with a random routing policy performs relatively
well for both a three table join (Figure 5) and a four
table join (Figure 6). We varied the bandwidth (at
each node) to show how the long it takes to complete
the query with varying degrees of network conges-
tion.

In both cases, the FREddy is in the middle (as ex-
pected), performing better than the worst plans and
slightly worse than best plans.

3Recall that the expected bottleneck is network congestion,
so CPU is not an important cost to measure, assuming it is rea-
sonable.

Figure 6:Completion time for the 4-way join

Plan Avg. Avg. Time Std. Dev.
#puts B.W.

RST 280K 104MB 2935 17.11
STR 154K 47MB 2899 1.85
FREddy-R 217K 84MB 2909 2.56
FREddy-QL 163K 71MB 2902 2.28

Table 1:Continuous publishing simulation results, com-
paring the static plans with the random FREddy and a
FREddy using the QL routing policy

6.2 Queue Length Routing Policy

Our next experiment was designed to show that the
FREddy is capable of performing even better when
a smarter routing policy is used. For this experi-
ment the tables are not preloaded, and are continu-
ously published in small batches beginning shortly
after the query is executed and continuing until all
256,000 tuples are inserted.

Not only is this a more realistic query in our target
environment, but it gives the routing policy opportu-
nity to learn query characteristics. If all the data is
preloaded, then the FREddy will be forced to make a
decision on every tuple all at once, preventing it from

9



Plan Min. Max. Avg. Std. Dev.
RST 42.54 164.67 111.52 56.77
STR 36.20 70.36 52.03 13.07
FREddy-R 49.42 214.98 103.80 65.98
FREddy-QL 58.54 59.53 59.04 0.69

Table 2: Time to the 5000th tuple on PlanetLab. Plans
RST, STR, and FREddy-R were run five times, while
FREddy-QL was only run twice

seeing the consequences of any of its decisions.
Table 1 shows the results. We show the total num-

ber of DHTput s executed, the total aggregate net-
work traffic during the query, the time till query com-
pletion, and finally the standard deviation for the
completion time.

The data shows that the FREddy-QL (QL rout-
ing policy) performs almost as well as the best
query plan (RST). The number ofput s is slightly
higher, showing that the FREddy-QL does make
some wrong decisions. There is a larger difference
in aggregate bandwidth due to the extra metadata the
FREddy-QL must send.

These results just scrape the surface of more ad-
vanced routing policies. However, it is interesting to
see that a very basic policy, using information that
is obtained locally, is able to come very close to the
performance of the best static plan.

6.3 PlanetLab Results

Our last set of experiments were performed on Plan-
etLab. For these experiments, approximately 180
nodes were used. We use Bamboo as the DHT layer
because its implementation handles network failures
better. The same data and queries as in the simula-
tions were run. Table 2 shows the results.

The table shows data for the arrival of the 5000th
tuple. Although the queries produce more results due
to conditions out of our control, not all queries re-

turned all the results. To compensate, we look at
the 5000th result, which represents about half of the
overall results.

As can be seen from the standard deviations re-
ported, the data was not very consistent between
runs. This is be expected with the PlanetLab testbed.
However, the results do indicate the FREddy is per-
forming relatively similar to our simulations.

7 Conclusion

In this paper we explore the need for adaptive query
processing within a P2P system and propose a vari-
ant of the Eddy, a FREddy, to perform tuple by tu-
ple routing decisions. Our initial experiments show
the feasibility of our design. Finally, we show the
promise of more complicated routing policies by
showing the performance of one simple routing pol-
icy (Queue Length).

It is expected that this work will be continued
and will become the standard method of optimizing
queries in PIER.

References

[1] Bamboo.Submitted for publication, 2003.

[2] R. Avnur and J. M. Hellerstein. Eddies: Con-
tinuously adaptive query processing. InProc.
2000 ACM SIGMOD International Conference
on Management of Data, pages 261–272, Dal-
las, May 2000.

[3] E. Brewer. Invariant boundaries. InNinth
International Workshop on High Performance
Transaction Systems (HPTS), Oct. 2001. Pre-
sentation available athttp://research.

microsoft.com/˜jamesrh/hpts2001/ .

[4] S. Chandrasekaran, O. Cooper, A. Deshpande,
M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, V. Raman,

10



F. Reiss, and M. A. Shah. Telegraphcq: Con-
tinuous dataflow processing for an uncertain
world. In CIDR, 2003.

[5] A. Deshpande. An initial study of overheads of
eddies.SIGMOD Record, 2003.

[6] G. Graefe. Encapsulation of parallelism in the
volcano query processing system. InProc.
1990 ACM SIGMOD International Conference
on Management of Data, pages 102–111, At-
lantic City, May 1990. ACM Press.

[7] R. Huebsch, J. M. Hellerstein, N. L. Boon,
T. Loo, S. Shenker, and I. Stoica. Querying
the internet with pier. InProc. of VLDB 2003,
Sept. 2003.

[8] Z. G. Ives, A. Y. Levy, D. S. Weld, D. Florescu,
and M. Friedman. Adaptive query processing
for internet applications. InIEEE Data Engi-
neering Bulletin, volume 23, June 2000.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content addressable
network. InProc. 2001 ACM SIGCOM Confer-
ence, Berkeley, CA, August 2001.

[10] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems.Lecture Notes
in Computer Science, 2218, 2001.

[11] P. G. Selinger, M. M. Astrahan, D. D. Cham-
berlin, R. A. Lorie, and T. G. Price. Access path
selection in a relational database management
system. InProc. 1979 ACM SIGMOD Inter-
national Conference on Management of Data,
pages 23–34, Boston, May 1979.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek,
and H. Balakrishnan. Chord: Scalable Peer-To-
Peer lookup service for internet applications.

In Proc. 2001 ACM SIGCOMM Conference,
pages 149–160, 2001.

[13] F. Tian and D. J. DeWitt. Tuple routing strate-
gies for distributed eddies. InProc. of VLDB
2003, pages 333–344, Sept. 2003.

[14] T. Urhan, M. J. Franklin, and L. Amsaleg.
Cost-based query scrambling for initial delays.
In Proc. 1998 ACM SIGMOD International
Conference on Management of Data, pages
130–141, 1998.

[15] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Tech-
nical Report UCB/CSD-01-1141, UC Berkeley,
Apr. 2001.

[16] Y. Zhou. Adaptive distributed query process-
ing. InPhD Workshop VLDB 2003, Sept. 2003.

11


