
1

Abstract

The recent proliferation of decentralized distributed hash
table (DHT) proposals suggests a need for DHT bench-
marks, both to compare existing implementations and to
guide future innovation. We argue that a DHT-based
query engine provides a unified framework for describing
workloads and faultloads, injecting them into a DHT, and
recording and analyzing the observed system behavior.
To illustrate this argument, we describe the possibilities
and challenges of using one such DHT database engine,
PIER, to describe and instantiate network dataflow pat-
terns, and to measure and report the resulting system
performance. Together, these capabilities form the foun-
dation of a benchmarking tool, while the distributed trac-
ing and analysis facilities alone support debugging.

1. Introduction

Researchers have recently proposed decentralized
Distributed Hash Tables (DHTs) as the fundamental
building block for a new generation of large-scale distrib-
uted applications. Although much attention has been
focused on the design of DHTs [2] [3] [4] [5], techniques
for evaluating key properties such as their performance,
incremental scalability, and robustness to failures have
not kept pace. As a result, these systems are commonly
evaluated using simulations or implementations that use
artificial and simplified workloads and faultloads. As
DHTs make the transition from theoretical endeavors to
essential application building blocks, it becomes increas-
ingly important to characterize the true performance,
dependability, and scalability of DHTs. The devil is often
in the details, and evaluation using standardized work-
loads and measurement criteria is essential to uncovering
those details. Thus we believe that the community would
benefit greatly from rich DHT benchmarks, both for
designers to evaluate design tradeoffs and for users to
compare systems.

DHTs are fundamentally content-based routing
schemes, delivering (or fetching) data to (or from) a des-
tination specified by a key value associated with the data.
Hence a content-centric dataflow system is appropriate
for describing and executing DHT benchmarks. Based on

this observation, we argue that a DHT-based database
query engine is a surprisingly convenient and flexible
substrate for benchmarking DHT implementations. Data-
base languages are handy for describing content, distrib-
uted database query processing is inherently based on
content-based dataflow, and queries are useful for post-
processing traces of system behavior.

In this paper we describe how a DHT-based query
engine, along with an extensible version of SQL, can be
used to express workloads and collect relevant metrics. In
particular, we describe how the PIER system [1] can be
used to describe a workload, to generate, stage and ship
the content that constitutes the workload, and to record
and analyze the DHT's behavior with respect to an exten-
sible set of metrics.

Because much of the value of DHTs lies in their
robustness to failures and attacks, it is important to evalu-
ate them not just for their performance but also for their
dependability. We therefore also mention briefly how our
framework can be used to describe, generate, and insert
“perturbations” into the system.

2. Context

Traditional database systems are sometimes used as a
benchmark application, and they are often used to orga-
nize and analyze benchmark results. But we are unaware
of past work that uses a query engine as a generic tool for
driving a benchmark.

Because large-scale geographically-distributed hash
table implementations are just starting to emerge, there
are no canonical benchmarks or benchmarking tech-
niques targeted to these systems. Existing studies use ran-
dom workloads [2] [3] [4] [5], occasionally combined
with workloads from one or two application domains [5].
Our goal in this early work is to develop a general bench-
marking mechanism for DHTs that will allow many kinds
of workloads to be expressed and generated using a very
compact language. In future work we hope to study the
myriad of policy details associated with designing good
DHT benchmarks.

3. Elements of a DHT benchmark

We will assume that the elements of a DHT bench-

Benchmarking DHTs with Queries

David Oppenheimer, Joseph M. Hellerstein, Ryan Huebsch, and David A. Patterson
University of California at Berkeley, EECS Computer Science Division
{davidopp, jmh, huebsch, pattrsn}@cs.berkeley.edu

2

mark include a workload, a perturbation load, and met-
rics. The workload is a sequence of calls to the DHT
API, which result in a network traffic pattern. This traf-
fic pattern is implicitly defined by the initial distribu-
tion of data among nodes, additional data injected into
the system by an application, the final destinations for
those data items, and the profile of data movement over
a time. Ideally, the benchmark consists of a suite of
workloads, each representative of an application com-
monly built atop a DHT. The perturbation load is a
sequence of out-of-band operations such as node addi-
tion and removal, changes in link characteristics, and
node and network faults, that are periodically triggered
as the workload is inserted. Metrics of interest for a
DHT benchmark include failure-free performance (e.g.,
throughput and latency in the absence of failure), per-
formance and data quality in the face of various types
of permanent and transient failures, load balance, utili-
zation, and time to recover from failures.

4. PIER overview

The context for this work is the PIER query engine
described in [1]. PIER is the “ top half” of a distributed
database system: a standalone distributed SQL query
engine. PIER can access data via DHTs, or via an
extensible iterator or “wrapper” that produces a stream
of structured data from a local data source. As exam-
ples, a wrapper can be configured to scan through the
names and metadata of files in a directory tree, to scan
the contents of a given file, or to fetch records piped
from a program with structured output, e.g., tcpdump.

As in any distributed query engine, network traffic
in PIER is often the result of joining distributed tables.
To perform a distributed join of two tables R and S, a
query engine must arrange for tuples of R to appear at
the same node as their matches in S, a form of set-based
rendezvous. PIER supports a number of different join
algorithms. Salient to the discussion here are the fetch-
matches and put-matches algorithms, which work when
one relation (say S) is already stored in the DHT with
that relation’s join column used as the DHT key. In the
fetch-matches algorithm, each node begins to scan its
local R tuples, and for each tuple it calls the DHT get()
function to fetch matching tuples of S from other nodes.
In the put-matches scheme, each node scans its local
fragment of R and calls the DHT put() function to send
those tuples to the nodes with matching S tuples. While
PIER supports other more general-purpose join algo-
rithms, as well as other relational operators, these two
algorithms will suffice for our discussion here.

5. The query engine approach to benchmarking

The primary operation performed by a DHT is rout-
ing a message from source to destination based on its
key. We assume that a basic DHT API is built on top of
this routing layer, in particular, a DHT API of

put(key, data): send <key, data> to the node
responsible for <key>

get(key) -> data: retrieve the <data> associated
with <key>

Although an eventual standardized DHT API will
likely include additional functions, put() and get() are
the fundamental hash table operations and are therefore
the operations that we wish to benchmark. They are
also the only network-based operations used by PIER to
implement a query plan

Given this API, we wish to design a general query
mechanism to generate calls to this API and thus DHT
traffic patterns. The workload we generate is a function
of the initial configuration of nodes, including the ini-
tial distribution if data among them, and the queries that
cause invocation of put() and get() operations. How
this DHT workload translates into an underlying IP net-
work workload depends on network topology, network
link characteristics, and various DHT details (e.g., rout-
ing policy and how keys are mapped to nodes).

5.1. Generating the workload

We begin with a simple example to drive our discus-
sion. Imagine the following query issued to PIER:

INSERT INTO localresults
SELECT *
FROM G, D
WHERE G.fkey = D.hashID

Assume that G.fkey is a foreign key from the G table
to the D table (i.e., each G tuple references some tuple
of D via G.fkey). Assume further that we have created D
to contain exactly one match for each G tuple, i.e., D
has one tuple for every value of D.hashID that is refer-
enced by G.fkey. Assume that each tuple of D is stored
as an entry in the hash table, with the hashID attribute
as the storage key.

To process the above query, PIER can initiate a put-
matches join on each node, scanning the G table on that
node and calling put(G.fkey, Gtuple). This query plan
will have the effect of setting up a communication pat-
tern: each tuple of G will, in turn, be shipped to the
node responsible for DHT key G.fkey specified in that
tuple of G, where it will be joined with the tuple's col-

3

umns in the D table, and placed into local storage for a
table called localresults. Because the D table has a
single match for each G tuple, the join is guaranteed to
generate exactly one result tuple for every arriving
tuple of G. Note that the node with the G tuple knows
the destination D node for the tuple, because the join
attribute is the DHT storage key used by the D table.

From the above, it should be obvious how to con-
struct a simple workload to exercise the DHT put()
operation: to have node X put() tuple data1 to node
N1, tuple data2 to node N2, and tuple data3 to node
N3, in turn, construct the G table on node N1 so that
tuple data1 has fkey=key1 such that key1 maps to N1's
partition of the keyspace, tuple data2 has fkey=key2
such that key2 maps to N2's partition of the keyspace,
and tuple data3 has fkey=key3 such that key3 maps to
N3's partition of the keyspace. Two effects are pro-
duced here: (a) by controlling the order and fkey value
distribution of G on each node, a put()-based traffic
pattern is generated, and (b) the shipped tuples are
recorded in the localresults table via the join with the
D table. (In Section 5.4 we describe how the get()
operation can be exercised using a PIER query.)

The localresults table serves to log the system’s
behavior. We therefore want a schema for G that has
columns for every attribute of interest that PIER can
usefully track during the benchmark run. For example,
PIER can fill in local-time-sent and IP-address-of-
sender columns of G when the DHT put() is invoked,
and can fill in local-time-received and IP-address-of-
receiver columns of G when the message is received
by the D node.1 If the DHT API includes the capabil-
ity to make upcalls on intermediate nodes to allow an
application to touch a message as it is being delivered
to its destination, additional data can be recorded such
as the IP addresses of all nodes that touch a message
and the times when the message was touched.

Assuming that the tuples of G are tagged with the
above statistics, when the benchmark run is finished,
queries can be issued to the localresults table to com-
pute benchmark statistics such as overall throughput
(number of tuples handled divided by benchmark run-
ning time), latency for individual put() operations,
etc. Given timestamps, changes in these metrics over
the course of the benchmark run can be examined over
time. Such an analysis is especially useful for bench-

marking DHT dependability, i.e., when perturbations
are inserted and it is desired to measure the system's
response to those perturbations. More generally, any-
thing that is visible either at the PIER senders, the
PIER recipients, or (depending on the DHT API) on
intermediate nodes, can be appended to a tuple pass-
ing through the system, and any analysis of the result
that can be expressed as a SQL query can be later
requested. Thus we can use our query engine not only
to generate a workload, but also to serve as a simple
distributed database that collects execution data and
directly generates desired benchmark metrics.

Note that this mechanism for collecting and ana-
lyzing a trace of the DHT's operation can be useful not
only for benchmarking, but also for collecting and
querying an execution trace for debugging the DHT.
For example, lost messages could be detected by com-
paring the contents of the results table after the bench-
mark run is finished, with the “correct” contents as
specified by the original query and table values. The
loss metric can be expressed as a SQL query.

Also note that we are assuming that the query plan
generated by our DHT-based query engine behaves as
we desire, e.g., it chooses the correct join order and
uses the put-matches join algorithm. To guarantee
this, we must be able to “ force a plan” on the query
optimizer. There is syntax to do this in most commer-
cial versions of SQL, and it would be reasonable to
incorporate such syntax to indicate how a DHT-based
query engine implements a benchmark-driving query.

Note also that this 2-table query involves a single
join, which causes a set of one-DHT-overlay-hop
communications. By adding more tables like D to the
query, and by fixing the join order correctly, more
hops can be introduced for each G tuple.

5.2. Using virtual tables

In the previous section we described a query that
uses materialized G and D tables. A more efficient and
convenient approach uses SQL table functions (virtual
tables) instead of materialized G and D tables. We will
call these functions generator() and dest(), respec-
tively, making our query
INSERT into localresults
SELECT *
FROM generator(parameters...) AS G,
 dest(parameters...) AS D
WHERE G.fkey = D.hashID

Recall that the G table controls the contents and
destination of the data sent via the DHT put() call.

1While these columns are part of G’s schema, they
are virtual in the sense that they are filled in by PIER
as the query runs. They are not written to the G table
until the join is processed at the D node.

4

Thus we can use the generator() function to generate
and control the routing of the data without having to
pre-compute and physically store the corresponding
database data. Instead of being a materialized table
pre-loaded into the DHT, the G table is available by
calling a function at every node that generates the G
table data on the fly. Likewise, we use the dest() func-
tion to avoid having to physically store the D table.

In the next sections, we sketch how the parameters
to the generator() function can be used to specify
workload characteristics such as initial data partition-
ing, final data destination, data size, and the pattern of
data movement over the course of the benchmark.

5.3. Tuple attributes and data rates

We next discuss properties the generator() param-
eters must describe, and how those properties might
be described, to generate a desired DHT workload.

A DHT benchmark is fundamentally about data
movement. Therefore the first important characteristic
of the benchmark's workload is the source of each data
item. In a real application, some data items will
already be stored in the instance of the DHT that
resides on the source node, while others will be pro-
duced by the application running on the source (“cli-
ent”) node. In the first case the data item will be sent
from the node that is responsible for the item's key,
while in the second case the data may be sent from
any node. Therefore in the first case the initial data
distribution might specify node IP addresses directly,
and in the second case it may be specified implicitly
by the key value associated with each tuple.

In addition to source, each tuple's destination must
be specified. This is determined by the fkey attribute
of each tuple. The generator() function must there-
fore create the appropriate values for this column,
reflecting the workload that is to be generated.

The last important attribute of each tuple is its size.
The generator() function must create appropriate data
sizes for the tuples reflective of the desired workload.

In addition to tuple attributes, the generator()
function must describe workload operation rate, which
can change over time. The rate at which each node's
instance of PIER scans its local copy of the G table
determines the rate at which it will call the DHT get()
and put() functions. In the case of a virtual G table,
this rate is controlled by the rate at which G tuples are
generated, specified as parameters to generator().

Tuple size, source, and destination might be speci-
fied using a statistical distribution, such as uniform,

normal, or Zipf, or using a predefined mapping or his-
togram of the desired values of the attribute. Alterna-
tively, these properties can be determined in a “ trace-
based” manner, based on a log of get() and put() oper-
ations collected from a real application. In this case
the generator() function could read from a pre-exist-
ing trace file, thereby generating on-the-fly a G table
that describes the traced workload. The operation rate
can be described by a temporal rate distribution and its
parameters. In the case of a trace file, we can times-
tamp the tuples with an elapsed trace time at the time
of collection, and instruct our generator() function to
produce a tuple only when the appropriate amount of
time has elapsed.

5.4. Put vs. get

Up to this point, we have described how to use a
DHT-based query processor to benchmark a DHT's
put() function. Because a DHT's put() and get() calls
both initiate content-based message routing, this
should be sufficient for benchmarking a DHT's under-
lying message routing layer. However, it may be
insufficient for benchmarking a DHT implementation,
since real DHT applications will also use the DHT
get() interface. We therefore would like a way to
incorporate get() into the DHT workload. This can be
accomplished by telling the PIER optimizer to use a
fetch-matches join rather than a put-matches join.

Imagine a query like the one used in Section 5.1:
INSERT INTO localresults
SELECT *
FROM driver, data
WHERE driver.fkey = data.hashID

We will use the driver table to specify the sequence
of DHT operations, much as the G table was used in
Section 5.1, but here the data table will contain the
data that is to be fetched. As before, assume fkey is a
foreign key from the driver table to the data table,
while hashID is the storage key for the data table.
Assume also that the data table has exactly one match
for each tuple of driver.

PIER will, on each node, perform a fetch-matches
join, scanning the driver table on that node and
requesting the corresponding data from the data table
by calling get(driver.fkey). In response, each data
tuple with data.hashID value matching driver.fkey
will be shipped to the requesting node, where it will
be joined with the tuple's columns in the driver table.
By controlling the contents of driver.fkey on each

5

node, we control the order and keys of get() requests,
and by controlling the data in the data table, we con-
trol the content that is routed.

5.5. Multiple messages and realistic workloads

Although it is useful to create a workload of purely
put()s or a workload of purely get()s, a real applica-
tion will drive a DHT with a mixture of put()s and
get()s. One way to generate such a workload is to
issue a series of very small put()-type and get()-type
SQL queries interleaved as desired. A less heavy-
weight approach is to issue one large put()-type query
and one large get()-type query combined using the
SQL UNION operator but sharing a scan of a table G;
PIER can then control the timing of the generation of
G tuples to interleave processing of the incrementally
generated G data, and hence the sequence of put() and
get() operations produced.

An example of an application that might interleave
get()s and put()s is a network monitoring application
that periodically collects system health parameters
from the nodes in the system and then publishes vari-
ous aggregates based on the results. Each node would
periodically publish its statistics as a tuple in a DHT
table. The monitoring application would periodically
scan this distributed table, computing aggregate met-
rics of interest, thus generating get() operations.
Assume a small number of nodes have “subscribed” to
each receive different types of statistical aggregates.
The monitoring application might then inform each
subscriber of the desired information using put()s.

5.6. Perturbations

As we discussed in Section 3, we believe it is
important that DHT benchmarks measure not just per-
formance but also system behavior in the face of fail-
ures and evolution. We therefore need a mechanism
by which new nodes join the network, existing nodes
leave the network, and distributed faults are injected.
We also need a way to describe when and how these
activities take place--either through a statistical char-
acterization or through a “perturbation trace.”

One way to inject a “perturbation trace” along with
the workload trace is to write user-defined SQL func-
tions to instruct PIER to simulate perturbations, and to
drive those functions with values in the artificially-
generated data. For example, let us modify the query
from Section 5.1 to read
INSERT INTO results
SELECT *, diskhang(G.hanglength)

FROM G, D
WHERE G.fkey = D.hashID

We can then fill in the hanglength column of a G
tuple with a nonzero time quantity to specify the dura-
tion of a simulated disk hang that is injected into the
system before this query is processed. This approach
can be generalized by using one column of the G table
to specify the type of fault and additional columns to
specify fault characteristics (e.g., length of time,
whether to insert the fault before or after the corre-
sponding tuple is processed, etc.).

A new node can be brought online, or an existing
node made to depart the network, using a user-defined
SQL function that calls an external benchmark super-
visor module that starts and stops nodes or processes.

6. Conclusion

We have argued that a distributed query engine
provides a natural framework for describing, execut-
ing, tracing and analyzing a DHT. We are beginning to
implement this methodology to benchmark existing
DHT implementations. In the future we hope to
extend this work to develop a useful DHT benchmark
that captures challenging and relevant workloads and
faultloads for a new generation of distributed applica-
tions. We also plan to leverage the distributed tracing
functionality to facilitate online debugging and moni-
toring.

References

[1] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S.
Shenker, and I. Stoica. Complex Queries in DHT-based
Peer-to-Peer Networks. 1st International Workshop on
Peer-to-Peer Systems (IPTPS '02), 2002.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A Scalable Content-Addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[3] A. Rowstron and P. Druschel. Pastry: Scalable, distrib-
uted object location and routing for large-scale peer-to-
peer systems. IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidel-
berg, Germany, 2001.

[4] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. ACM SIG-
COMM 2001, 2001.

[5] B. Y. Zhao, J.Kubiatowicz, and A. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Loca-
tion and Routing. U. C. Berkeley Technical Report
UCB/CSD-01-1141, 2001.

